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Chapter 1 
Applications of Geospatial 
and Information Technologies Toward 
Achieving Sustainable Development 
Goals 

Srabani Das, Kuntal Ganguly, Tarik Mitran, and Surya Deb Chakraborty 

Abstract Sustainable development is possible by holistically prioritizing urban 
and rural development activities by capturing many complexities, constraints, and 
livelihood opportunities. In this context, United Nations (UN) designed a blueprint 
containing seventeen interlinked Sustainable Development Goals (SDGs) to address 
the global challenges, including climate change, environmental degradation, peace, 
poverty, inequality, and justice. The achievement of SDGs and their universality 
would be possible through readily available data from affordable sources such as 
remote sensing images and readily available sources. The spatio–temporal data anal-
ysis is crucial for assessing, monitoring, and decision-making and becomes integral 
in addressing SDG indicators. However, the advancement and availability of an 
enormous amount of earth observation data increased the need for new methods and 
techniques. Nowadays, the integration of geospatial technologies along with informa-
tion and communication technology (ICT) like the Internet of Things (IoT), big data, 
machine learning (ML), artificial intelligence (AI), advanced sensor networking, and 
crowdsourcing has made a powerful analytic platform for Spatial Decision Support 
System (SDSS). This chapter comprehensively reviews and documents the scope 
and application of geospatial and information and communication technology and 
its role in action plan formulation toward achieving SDGs. 
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learning · Sustainable development goals (SDGs) · Sensors
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Abbreviations 

AI Artificial intelligence 
AIS Automatic identification system 
GDP Gross domestic product 
GPS Global positioning system 
GT Geospatial technologies 
IBM International business machines 
ICT Information and communication technology 
IoT Internet of things 
IT Information technology 
LST Land surface temperature 
ML Machine learning 
MOOCs Massive open online courses 
RESAP Regional space applications programme for sustainable development 
SD Sustainable development 
SDGI Sustainable development goals index 
SDGs Sustainable development goals 
SDSN Sustainable development solutions network 
SDSS Spatial decision support system 
SIDS Small island developing states 
UN United Nations 
UNESCAP United Nations economic and social commission for Asia and the 

Pacific 
VGI Volunteered geographic information 
VR Virtual reality 

1.1 Introduction 

Post-industrial revolution during the second half of the nineteenth century had a 
significant impact on environmental and social equality in Western societies. The 
series of economic and social crises may be the reason (Fig. 1.1). The ecologist 
and philosopher Garret Hardin wrote an essay in 1968 entitled “the tragedy of the 
commons”, where he highlighted the issue that if individuals act according to their 
interests, then it would be going against the common interests of their societies and 
deplete the natural resources of this planet. In the early 1970s, the term “sustain-
ability” was evolved to describe an economy “in equilibrium with basic ecological 
support systems”. Ecologists have highlighted the alternative way of a “steady-state 
economy” to address environmental issues. The consequences of what could happen 
on a planet with limited resources had predicted through computer simulation by the 
researchers (Meadows et al. 1972, 2013). They have projected that an economic and 
social collapse will occur by the end of the twenty-first century if man imposes no
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Fig. 1.1 Global economic, social, and ecological crisis after industrial revolution 

limits on growth. After more than four decades, these predictions seem to be correct. 
The environmental degradation due to over-exploitation of limited resources and 
pollution and its consequences are threatening sustainable development. The idea 
of sustainable development (SD) was mentioned for the first time in the Brundtland 
Report in 1987. It was defined as the development that meets the needs of the present 
without compromising the ability of future generations to meet their own needs. SD 
is the organizing principle for meeting human development goals while simultane-
ously sustaining the power of natural systems to provide the natural resources and 
ecosystem services on which the economy and society depend. 

In another way, it shows the path of systematically organizing society so it can 
exist in the long term considering the preservation of the environment and natural 
resources or social and economic equity. In 2015, United Nations (UN) set up 17 
Sustainable Development Goals (SDGs) to address the various global challenges 
presented in Fig. 1.2. Sustainable development is possible by holistically capturing 
many complexities, constraints, and livelihood opportunities that they are subjected 
to, prioritizing urban and rural development activities. The urban development activ-
ities include food security, infrastructure, transportation, energy efficiency, waste 
management, etc. In rural areas, challenges are mostly related to poverty, agriculture, 
disasters, etc.

The spatial–temporal data analysis is the key and significant component of the 
sustainable development framework for the decision-making and prioritization of 
those activities. The advantage of using geospatial technologies has proven to be 
effective for achieving targets in many projects. It helps to plan and execute programs 
systematically and holistically because of its location-based analytics and visualiza-
tion offered by earth observation technologies. National and international organiza-
tions realize the importance and effectiveness of geospatial tools and techniques in
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Fig. 1.2 Seventeen SDGs proposed by the UN. Adapted from https://www.un.org

achieving the SDGs. Hence, the UN has formulated the 2030 agenda for SD, including 
guidelines for appropriate uses of earth observation and geospatial data to measure, 
monitor, report, and achieve the SDGs. Even sustainable development has included 
guidelines for proper use of geospatial and earth observation data. Nowadays, inte-
grating geospatial technologies and other technologies like IoT, big data, ML, AI, 
advanced sensor networking, and crowdsourcing has made a powerful analytic plat-
form for Spatial Decision Support System (SDSS). On the other hand, mobile-based 
services and integrated IoT networks enable person-to-object and object-to-object 
communication. Besides, affordable graphics processing units (GPUs) and cloud 
computing services ease accessibility to massive computing power. In urban areas, 
location analytics and advanced sensors can gather information about pollution 
level checking, traffic management, energy, and water usage through an intelli-
gent building, innovative grid technology, etc. Similarly, in rural areas, geospatial 
analytics helps farmers take appropriate measures related to agriculture develop-
ment. Besides, it helps the administration build infrastructure like schools, hospitals, 
banking systems, electricity distribution, and many more based upon spatial analysis. 
This chapter comprehensively documents geospatial data analysis and synthesis tools 
and methods and their role in action plan formulation toward achieving Sustainable 
Development Goals.

https://www.un.org
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1.2 Sustainable Development Goals 

1.2.1 Targets 

United Nations has proposed a plan entitled “Transforming Our World: The 2030 
Agenda for Sustainable Development (Agenda 2030)” to address the global issues 
at the UN Sustainable Development Summit in 2015. The proposal sets 17 SDGs 
to manage the global challenges, i.e., inequality, poverty, and the effects of climate 
change effects. Figure 1.2 shows all SDGs are globally recognized and adopted by 
many countries considering the feasibility of the plan. SDGs were set up to improve 
the living conditions and conservation of the environment, especially in developing 
countries and developed countries too. In order to reach the goal, the Sustainable 
Development Solutions Network (SDSN) was formed to monitor the activity of 
countries and regions working toward the implementation of the SDGs and also 
record the information related to it. 

1.2.2 Sustainable Development Goals Index (SDGI) and Its 
Global Perspective 

The effectiveness of the SDGs is determined by the SDGI. Hence, a dashboard has 
been set up containing a scale from 0 to 100. The “0” and “100” show the worst level 
of implementation and full compliance with the targets, respectively. The current 
status of SDGI at a global level is presented in Fig. 1.3.

The World Economic Forum has published a ranking on the performance of each 
country toward achieving SDGs using SDGI (World Economic Forum (2021). As 
per the report, countries, namely Sweden (84.5), Denmark (83.9), Norway (82.3), 
Finland (81), and Switzerland (80.9), have implemented SDGs more effective manner 
and ranked in the top five for good performance in addressing social and economic 
issues. However, many African countries like the Central African Republic (26.1), 
Liberia (30.5), the Democratic Republic of the Congo (31.3), and Niger (31.4) are in 
the poor performance category. The responsible aspects behind the poor performance 
of these countries are especially poverty, hunger, education, and peace and justice. 
Besides, a country like the USA is in the 25th place with 72.7points; Canada is in 
13th position with 76.8 points; Australia is in 20th place with 74.5 points, and the 
UK is in 10th position with 78.1points.
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Fig. 1.3 SDGI showing status of SDGs at global level. Data source World Economic Forum (2021)

1.2.3 Impact of COVID-19 Pandemic on SDGs 
Implementation 

The implementation of SDGs became more challenging as the COVID-19 pandemic 
progressed across the globe. Guillaume Lafortune from UN Sustainable Develop-
ment Solutions Network Initiative has summarized the key findings of the Sustain-
able Development Report 2020 on June 25, 2020, and reported that COVID-19 
is negatively affecting several goals such as no poverty-SDG 1; zero hunger-SDG 
2; good health and well-being-SDG 3; decent work and economic growth-SDG 8; 
and reduced inequalities-SDG 10. The overall impact of COVID-19 on SDGs is 
summarized in Fig. 1.4.

1.3 Importance and Scope of Geospatial Technology 
on SDGs Implementation 

Geospatial tools and techniques can play a vital role in achieving targets through their 
decision support, planning, and monitoring capabilities (Fig. 1.5). Remote sensing 
satellite is capable of providing a synoptic view and repetitive coverage of the earth’s 
features. Commendable progress has been observed in the scientific world toward
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Fig. 1.4 COVID-19 impact on SDGs. Data source Sachs et al. (2020)

using geospatial data at various spectral, radiometric, temporal, and spatial reso-
lutions enabling the usage of the data for various applications (Avtar et al. 2019; 
Ganguly et al. 2021; Mitran et al. 2021a, b). Hence, images provided by various 
satellites can be used effectively for the implementation of SDGs and monitoring of 
their progress.

A set of quantifiable indicators, targets, and observable data specific to each goal 
has been devised to monitor the progress (Hák et al. 2016). The systematic data obser-
vations at the local and community level are required for the subsequent decision-
making process, which includes the collaboration of various stakeholders. The quality 
of data and proper data collection abilities are vital to optimally measuring various 
SDGs indicators. The UN has also highlighted the issues related to data collection 
and quality and emphasized the need for a data revolution to enhance data quality 
(Kharas et al. 2014). In this context, the recent advancement and availability of 
various geospatial data, techniques, and products could play a meaningful role. 

Moreover, there are many satellite sensors, each with particular characteristics, 
which are essential tools for visualizing and monitoring changes at global and 
local scales (Avtar et al. 2019). The scientific findings obtained using geospatial 
approaches can provide a strong basis for policymaking to promote SD in commu-
nities at local and regional levels (Habitat 2015; United Nations 2016). Besides,
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Fig. 1.5 Scope of geospatial 
technologies

in situ sensors can be installed to measure these variables at the local scale with a 
higher frequency. Hence, geospatial tools and techniques can be used very effectively 
for monitoring most of the SDGs (Dangermond and Artz 2010; Kuffer et al.  2018; 
Orimoloye et al. 2018; Tatem et al. 2017). 

1.4 Application of Geospatial Techniques Toward 
Achieving SDGs 

Geospatial tools and approaches can be used efficiently for monitoring many of the 
SDGs. However, geospatial data is not yet feasible for all SDGs. 

The selected SDGs and geospatial tools and methods to produce appropriate data 
for monitoring the progress of different indicators of these goals are illustrated in 
Fig. 1.6. The application of geospatial technology in selected SDGs and database 
sources supposed to be used for that analysis is summarized and presented in Table 
1.1.

1.5 Application of Information and Communication 
Technology Toward Achieving SDGs 

Recent advancements in information and communication technology (ICT) and 
global interconnectedness show great potential to accelerate SD plans. The aim of 
using such technologies is to bridge the digital divide and to develop knowledge
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Fig. 1.6 Application of geospatial analysis in some selected SDGs

societies. Digital technology can play a crucial role in monitoring the progress of 
different indicators of various SDGs. The use of digital techniques could be essential 
to achieve the SDGs, considering the need for accelerated progress to fulfill the goals 
by 2030. As technology is revolutionizing, the digital transformation initiatives will 
radically alter agriculture, energy, manufacturing, transportation, and other industrial 
sectors of the economy in the next ten years. Although there are many technologies 
involved in such transformation, a few are especially useful in the context of SDGs. 
These are big data, AI/ML, and IoT. 

1.5.1 Application of Big Data 

There is an increasing trend in the volume of data in the world. As per a recent 
estimate, about 90% of this data has been created in the last two years. Moreover, there 
is a future projection of an annual increment in the volume of these data by 40%. A 
maximum share of this output is “data exhaust” or passively collected data from daily 
interactions with digital products or services, including social media, credit cards, 
mobile phones, etc. Nowadays, extensive data analysis is standard in the private 
sector. Several approaches such as predictive analysis, personalized services, and 
consumer profiling are being used for advertisement, management, and marketing 
purposes. Similar techniques can be adopted and used to gain real-time insights into 
people’s well-being by targeting aid interventions to vulnerable groups. 

Besides, integrating these approaches with various satellite data, geospatial tech-
niques, and data analytics methods can enable more agile, efficient, and evidence-
based decision-making if applied responsibly. It could also use to measure and 
monitor the progress toward achieving SDGs in a way that is both inclusive and fair.
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Table 1.1 Geospatial application toward achieving different sustainable development goals 

SDGs Sources of spatial 
data 

Sources of 
non-spatial data 

Geospatial 
applications 

References 

SDG 1: no 
poverty 

Satellite 
imageries 

Census data Poverty mapping Asensio (1997) and  
Tatem et al. (2017) 

Identify inequality 
and spatial 
disparities 

Kuffer et al. (2018) 

Mobile location 
data 

Location-based 
credit consumption 

Eagle et al. (2010) 
and Soto et al.  
(2011) 

Thematic 
data—slope, soil, 
land use type 

Demographic 
variables, 
distance, travel 
time to public 
resources 

Spatial pattern 
analysis 

Okwi et al. (2007) 

Nighttime 
satellite data, 
land cover, 
topography 

Population data Poverty index 
calculated by 
dividing 
population count 
by the pixel 
brightness of 
nighttime images 

Elvidge et al. (2009) 
and Tatem et al. 
(2017) 

SDG 2: no 
hunger 

Temporal 
satellite 
imageries 

Crop yield 
assessment 

Arroyo et al. (2017) 

Unmanned aerial 
vehicle (UAV) 

Precision farming Maes and Steppe 
(2019) 

Landsat imagery 
and UAV 

Estimation of 
irrigated area 

Nhamo et al. (2018) 

Climate data Hunger 
population data 

Hunger hotspot 
analysis and 
impact analysis of 
climate change 

Liu et al. (2008) 

SDG 3: good 
health 

Satellite 
imageries 

Healthcare 
access data 

Proximity analysis 
of healthcare 
facility for primary 
care facilities 

Rosero-Bixby 
(2004) 

Satellite 
imageries, land 
use and land 
surface 
temperature 
(LST) 

Impact of 
urbanization and 
LST on health 

Orimoloye et al. 
(2018)

(continued)
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Table 1.1 (continued)

SDGs Sources of spatial
data

Sources of
non-spatial data

Geospatial
applications

References

Healthcare 
location data 

Clinical data Epidemiology 
studies and 
GIS-based 
mapping to prevent 
future pandemics 

Lüge et al. (2014) 
and Maude et al. 
(2014) 

Location data of 
COVID-19 
infected patient 

Details of 
patient’s 
associated 
people 

GIS-based contact 
tracing and 
creation of 
containment zones 

Mishra et al. (2021) 

SDG 4: quality 
education 

Education 
location data 

Education 
infrastructure 
data 

Proximity analysis 
for basic education 
facility 

Daiman and Goyal 
(2020) 

Enrollment data Census data Assessment of 
school enrollment 
and dropout 
students 

Trinidad (2022) 

SDG 6: clean 
water and 
sanitation 

Satellite imagery, 
land cover, 
hydrology, 
geology, 
vegetation 

Assessment of 
groundwater 
potential zone 
using multi-criteria 
analysis 

Machiwal et al. 
(2011) 

Satellite imagery 
derived land 
cover and 
infrastructure 
data 

Geographical 
analysis for 
planning of 
infrastructure 
development 

Paulson (1992) 

Satellite imagery, 
land cover, slope, 
soil type 

Land 
ownership data, 
weather data 

Environmental 
impact assessment 
and design 
infrastructure 
facilities 

Tatem et al. (2017) 
and Kuffer et al. 
(2018) 

IRS-LISS-II, 
DEM, and 
groundwater data 

GIS analysis to 
prepare proper 
groundwater 
management plan 
for a hard rock 
terrain 

Saraf and 
Choudhury (1998) 

SDG 7: 
affordable and 
clean energy 

Satellite 
imageries 

Natural 
renewable 
energy 
resources data 

GIS analysis for 
assessing access to 
affordable, 
reliable, 
sustainable, and 
modern energy 

ESRI (https://learn. 
arcgis.com/en/paths/ 
solve-problems-for-
sustainable-develo 
pment-goals)

(continued)

https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
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Table 1.1 (continued)

SDGs Sources of spatial
data

Sources of
non-spatial data

Geospatial
applications

References

SDG 8: decent 
work and 
economic 
growth 

Industry location 
data 

Industry type 
and category of 
industry 

Assessing 
predicted 
economic growth 
and business 
growth by industry 

ESRI (https://learn. 
arcgis.com/en/paths/ 
solve-problems-for-
sustainable-develo 
pment-goals) 

Economic 
growth data 

Determine how 
location impacts 
on interest rates 

SDG 11: 
sustainable 
cities and 
communities 

Very 
high-resolution 
satellite imagery, 
land cover 

Population Image analysis to 
monitor 
wastewater 
treatment at 
different locations 

Ulugtekin et al. 
(2005) 

Temporal 
satellite 
imageries 

Urban growth 
mapping to support 
energy sector 

Haslauer et al. 
(2012) 

Groundwater 
data, drainage 
data 

Climate data Water scarcity 
mapping and 
forecasting 

Quinteiro et al. 
(2019) 

Climate data, 
satellite 
imageries 

Historical 
disaster data 

Geospatial data 
analysis for 
disaster 
management 

Lwin et al. (2019) 

Satellite images, 
ground-based 
sensors, land use 

Pollution data Monitoring air and 
water pollution and 
forecasting future 
plan 

Bonaiuto et al. 
(2015) 

Temporal 
satellite 
imageries, land 
use 

Settlement 
data, 
socioeconomic 
data 

Informal 
settlement 
mapping and 
analysis of 
underlying cause 
through GIS 

Dovey (2015), 
El-Batran and 
Arandel (2005) and  
Karanja (2010) 

SDG 13: 
climate action 

Temporal 
satellite 
imageries, 
climate data 

Historical 
events 

Building 
geospatial 
framework by 
integrating 
historical and 
future data from 
different sources 
and merge them 
together in a single 
system using GIS 

Dangermond and 
Artz (2010)

(continued)

https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
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Table 1.1 (continued)

SDGs Sources of spatial
data

Sources of
non-spatial data

Geospatial
applications

References

Remote sensing 
satellite images 

Ozone hole study 
using remote 
sensing data and 
analysis of daily 
global ozone 
concentration 
maps 

Avtar et al. (2019) 

Remote sensing 
satellite images 

Monitoring climate 
change impacts on 
the glacier and 
permafrost-related 
hazards which is 
potential threat to 
livelihood of 
population lives in 
mountainous areas 

Kaab et al. (2006) 

Remote sensing 
satellite images 

Monitoring 
sea-level changes 
using 
spatiotemporal 
data 

Elias et al. (2020) 

SDG 14: life 
below water 

Satellite 
imageries 

Marine 
ecological data 

Sustainable use 
and management 
of important 
tropical coastal 
ecosystems using 
integrated remote 
sensing and GIS 

Dahdouh-Guebas 
(2002) 

Remote sensing 
satellite images 
for marine study 

Spatial monitoring 
of sea 
grasses/coastal 
management 

Ferguson and 
Korfmacher (1997) 

Synthetic 
aperture radar 
(SAR) data„ 
Landsat-8, 
Sentinel-I 

Detecting oil spills 
using microwave 
remote sensing 
images 

Yu et al. (2017) 

Satellite 
imageries, 
sensor-based data 

Identification of 
potential fishing 
zones by detecting 
sea surface height 
anomaly, ocean 
temperature, color, 
etc. 

Saitoh et al. (2011)

(continued)
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Table 1.1 (continued)

SDGs Sources of spatial
data

Sources of
non-spatial data

Geospatial
applications

References

SDG 15: life 
on land 

Multi-temporal 
satellite 
imageries 

Monitoring 
deforestation 

Reddy et al. (2016) 

Global tree cover 
data 

Forest 
fragmentation 
study 

Riitters et al. (2016) 

GPS data and 
satellite 
imageries 

Investigation of 
illegal logging 
operation 

Kusumaningtyas 
et al. (2009) 

Advanced land 
observing 
satellite (ALOS) 
phased arrayed 
L-band synthetic 
aperture radar 
(PALSAR) 

Monitoring 
above-ground 
forest carbon stock 
and carbon 
sequestration study 
due to loss of forest 

Thapa et al. (2015) 

SDG 16: 
peace, justice, 
and strong 
institutions 

Satellite 
imageries 

Institution data GIS analysis to 
promote peaceful 
and inclusive 
societies, provide 
access to justice, 
and build 
accountable 
institutions 

ESRI (https://learn. 
arcgis.com/en/paths/ 
solve-problems-for-
sustainable-develo 
pment-goals) 

Public policies Examine racial 
inequities in 
unsolved murder 
cases/criminal 
activities 

Data collection 
for problem 
areas 

Calculate 
environmental 
equity for public 
policy

The integrated use of geospatial data and big data for achieving SDGs is presented 
in Table 1.2.

1.5.2 Application of Artificial Intelligence 

Artificial intelligence is an emerging technique and has a broader impact on many 
sectors. It can bring about large-scale improvements and transformations in health, 
agriculture, and education. AI impacts these sectors by delivering government

https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
https://learn.arcgis.com/en/paths/solve-problems-for-sustainable-development-goals
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Table 1.2 Combined use of big data and geospatial data toward achieving different SDGs 

SDGs Big data sources Type of data Geospatial 
sources 

Type of data 

SDG 1: no poverty Mobile phone data Human mobility 
and socioeconomic 
levels assessment 

Satellite 
derive 
information 

Poverty 
mapping 

Estimating poverty 
and wealth 

Socioeconomic 
status 

Citizen-generated 
data 

Financial 
assessment 

Disaster response 

SDG 2: no hunger Mobile phone data Food expenditure Satellite data Drought 
monitoring 

Online price 
data/scanner 
data/social media 
data 

Consumer price 
index assessment 

Crop yield 
assessment 

SDG 3: good 
health and wellness 

Mobile phone data Mobility from 
regions of disease 
outbreak 

Spatial 
information 

Compilation of 
indicators 

Sources and sinks 
for diseases 

Seasonal trends of 
diseases 

Search engine data Diseases trend 
assessment 

Identification of 
hotspots for traffic 
accidents and 
preventive measures 

SDG 4: quality 
education 

Mobile phone data Low literacy zone 
identification 

Spatial data Compilation of 
data 

MOOCs data Policymaking of 
education 

SDG 5: gender 
equality 

Mobile phone data Gender prediction Satellite data Gender 
assessmentSocial media data Gender equality 

assessment 

SDG 6: clean water 
and sanitation 

Cloud data Service data 
assessment 

Satellite data Compilation of 
indicators 

SDG 7: affordable 
and clean energy 

Smart meter data Determine 
residential 
electricity 
consumption 

Satellite data Detect 
nighttime 
luminosity

(continued)
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Table 1.2 (continued)

SDGs Big data sources Type of data Geospatial
sources

Type of data

SDG 8: decent 
work and economic 
growth 

Postal data GDP, economic, 
and human 
development 

Satellite 
derive 
information 

Indicator for 
GDP and 
economic 
development 

Search engine data Identifying 
unemployment 
trends and shocks in 
the workforce 

Remote 
sensing data 

Data 
compilation and 
assessment 

Mobile phone data Estimation of 
seasonal tourism 
and destination of 
tourists and inform 
policies for promote 
sustainable tourism 

SDG 9: sustainable 
industrialization 

Mobile phone 
data/GPS 
data/Google traffic 
data 

Patterns of road 
usage, pockets of 
congestion, and 
determine mobility 
patterns of 
population, key 
factors in the 
development of 
infrastructure 

Remote 
sensing data 

Data 
compilation and 
assessment 

SDG 10: reduce 
inequality 

Mobile phone data Assessing changes 
in the 
socioeconomic 
status of 
populations 

Remote 
sensing data 

Data 
compilation and 
assessment 

SDG 11: 
sustainable cities 
and communities 

Mobile phone data Population hotspots Remote 
sensing data 

Poverty and 
slums mapping 

Social events and 
home locations 

Remote 
sensing data 

Land cover/land 
use changes 

Origin–destination 
flows 

Other spatial 
data 

Data 
compilation 

Geo-social radius 

Identification of 
human mobility 
after disasters 

SDG 13: climate 
change 

Mobile phone data Estimation of 
human mobility 
after disasters or 
any climate changes 

Satellite data Changes in the 
water 
ecosystem and 
monitoring of 
other changes

(continued)
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Table 1.2 (continued)

SDGs Big data sources Type of data Geospatial
sources

Type of data

SDG 14: life below 
water 

Citizen generated 
data/cloud data 

Assessment of 
effect of global 
changes 

Geospatial 
data 

Compilation for 
this indicator 

AIS data Identify illegal 
fishing and 
monitoring of 
protected marine 
areas 

SDG 15: life on 
land 

Mobile phone data Assessment of 
accessibility and 
other factor 
affecting life on 
land 

Remote 
sensing data 

Forest mapping 
and changes in 
vegetation 

Citizen generated 
data 

Assessing data 
compilation 

SDG 16: peace, 
justice, and strong 
institution 

Mobile phone 
data/social media 
data 

Crime prediction 

Criminal activity 
zoning

services to citizens, accelerating innovation and enterprise creation, and reducing 
the cost of public service and the operation of critical infrastructure. 

Hence, the formulation of new methods with the inclusion of ML and AI tech-
niques could open a pathway for effective use of the large volume of available data 
from satellite images and other platforms and enable us to make giant strides toward 
achieving SDGs. 

The high-resolution temporal satellite data, advanced analytical techniques using 
AI and computing services, can help prevent outbreaks of diseases, map populations, 
provide insight into gender inequality, enable supply chain transparency, support effi-
cient post-disaster response, and disrupt human trafficking networks. The combined 
applications of AI with geospatial technologies toward achieving SDGs are presented 
in Table 1.3. Many countries, specifically in the Middle East and Asia, have already 
incorporated AI as a critical component of their economic growth and development 
strategy. The impact of AI on achieving various SDGs (Fig. 1.7) was assessed by 
Vinuesa et al. (2020) and reported that AI may act as an enabler on 134 targets (79% 
across all SDGs) through a technological improvement, which may allow overcoming 
certain present limitations. However, there are 59 targets (35%, also across all SDGs) 
that may experience a negative impact from the development of AI.
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Table 1.3 Application of AI with geospatial technology toward achieving SDGs 

SDGs Data source Applications References 

SDG 1: no poverty Satellite images Predict and prevent 
extreme climate-related 
events 

Decuyper et al. (2020) 

Climate data 

SDG 3: good health Population data Predictive modeling to 
identify populations at 
high risk for disease 

Bi et al. (2019), 
Dahdouh-Guebas 
(2002), Istepanian and 
Al-Anzi (2018), Topol 
(2019) and  VoPham  
et al. (2018) 

Administrative map 

Health data 

SDG 6: clean water 
and sanitation 

Satellite images Identifying water 
threats using machine 
learning algorithm in 
combination with 
remote sensing spectral 
indices 

Wang et al. (2017) 

Local sensor data 

SDG 11: sustainable 
cities and communities 

Satellite images AI-based algorithm to 
map informal 
settlements 
Predictive analysis for 
disaster management 

Ivić (2019) 

Other sensor data 

SDG 13: climate action Satellite images Machine learning and 
artificial intelligence to 
aid climate change 
research and 
preparedness 

Huntingford et al. 
(2019)Climate data 

SDG 15: life on land Satellite images Machine 
learning-based image 
classification to identify 
land use/land cover 
changes, forest cover 
changes 

Ganguly et al. (2017)

1.5.3 Application of Internet of Things 

In recent years, one of the most well-known technologies growing to new heights 
and creating a touchstone is the Internet of Things (IoT). The future of interaction 
has molded things (objects) of the natural world into smart objects (Khanna and Kaur 
2020). As it is expected to grow the worldwide connected devices by this decade, it 
opens up an incredible opportunity to use IoT technology to aid in achieving the 2030 
Agenda of SDGs. According to a study conducted in partnership with IoT research 
firm and IoT Analytics, 84% of existing IoT deployments can achieve the SDGs 
(Fig. 1.8). Surprisingly, 75% of these projects are focused on just five SDGs (World 
Economic Forum (2021).
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Fig. 1.7 Impact of AI on the various SDGs. Adapted from Vinuesa et al. (2020)

Fig. 1.8 Maximum deployment of IoT in SDGs 

The Internet of Things plays a significant role in helping enterprises accomplish 
this goal. The combination of IoT and geospatial technology significantly improves 
three specific goals presented in Fig. 1.9.

1.6 Integration of Geospatial Technology with ICT and Its 
Significance 

The advancement of cutting-edge technologies such as IoT, AI, ML, VR, Digital 
Twins, crowdsourcing, citizen science, VDI, and participatory sensing will alter how 
we work, live, and think. Geospatial technology is integrated with advanced tech-
nologies to create advanced tools for sustainable development and decision support 
systems at the regional level (Acharya and Lee 2019).
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Fig. 1.9 Application of IoT 
with geospatial technology 
in SDGs

The challenges in geospatial data involved its acquisition, storage, transfer, 
sharing, searching, visualizing, and analysis of the data. The facets of big data gener-
ally refer to the three V’s (i.e. Volume, Variety and Velocity) which is considered as 
common framework to describe big data (Laney 2001). 

The remote sensing big data has numerous unique and solid characteristics; i.e., in 
the high-dimensional, dynamic state, the data should have nonlinearity characteris-
tics, state, isomer, multi-scale, multi-source, isomer, and nonlinearity characteristics 
(Liu 2015). Figure 1.10 shows the integration of ICT with geospatial technology.

1.7 Gaps or Challenges 

Integrating geospatial technology, i.e., remote sensing and geographical information 
system (RS and GIS) with information technology (IT), i.e., big data, AI/ML, and 
IoT, will change how we live, work, and the thought process. Implementing the new 
technology with advanced tools for sustainable development will change the method 
of assessment, monitoring, and decision support system. The geospatial data and big 
data-driven algorithm, AI/ML, and IoT will help prove high-quality, most accurate, 
real-time integrated, location-enabled analysis with robust decision-making tools. 

Nonetheless, with the advancement of the integration of technologies, there are 
still some challenges and limitations. The challenges exist in various aspects; some 
are data-related, administration level, implementation level challenges, etc. Devel-
oped countries have enough resources, data, and awareness, but many developing 
countries face significant challenges due to accurate high, definition data, resources, 
skilled workforce, and limited understanding. Some significant challenges are iden-
tified and presented in Fig. 1.11. The challenges related to various aspects are given 
as follows.
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Fig. 1.10 Integration of ICT with geospatial technology

Fig. 1.11 Challenges, intervention, and implementation pattern to achieve SDGs 

1.7.1 Data-Related Challenges 

Various sources of data are an integral part of accurate analysis. The most critical 
datasets are RS data produced by many RS satellites and ground sensors. The datasets 
deal with calibration, quality, interoperability, data processing, visualization, etc. 
Other factors, i.e., image processing techniques, spectral uncertainty, and images
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resolutions, affect RS data quality. Mobile phone data, cloud data, citizen generated, 
etc., used for big data analysis are not accessible. The availability of ground data or 
secondary data for the specific area will also affect the analysis. Procuring accurate 
data within a particular time frame is a challenging factor that needs administrative 
intervention. 

1.7.2 Lack of Technology Infrastructure 

Technologies are changing day by day with the advancement of tools and approaches. 
A considerable amount of data needs high data processing power hardware to process 
high volume data and high capacity of servers. Hence, underdeveloped countries need 
proper support to get those high-definition systems. 

1.7.3 Skilled/Trained Manpower 

Advanced technologies, including software, demand highly skilled human resources 
in IT sectors. Training the existing workforce using traditional analysis methods 
would be crucial to increasing professional human resources. More specifically, 
developing countries, including Small Island Developing States (SIDS), may not 
have sufficient experts and human resources to take advantage of these innova-
tive technologies fully. Countries can strengthen their human resources base and 
build capacity through regional and international partnerships (UNESCAP 2018) and 
Regional Space Applications Programme for Sustainable Development (RESAP). 

1.7.4 Lack of Awareness 

Lack of awareness about data, technology, and new ideas is widespread in devel-
oping countries. There are fears among the traditional practitioners regarding the 
new geospatial and information technology that exists in developing countries, which 
will slow down the rate of advancement. 

1.7.5 Others 

Budget constraints in technology, workforce up-skilling, and data procurement are 
significant challenges in some developing countries. Administrative preparedness 
and proper coordination with technology advancement are essential to address the
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significant challenges, and it should be encouraged to achieve the global Sustainable 
Development Goals. 

1.8 Conclusions 

• The current chapter shows a comprehensive review of the combined use of geospa-
tial tools/techniques and information/communication technology to achieve 
SDGs. 

• SDGs have been set up to address many global challenges, such as poverty, 
inequality, climate change, environmental degradation, peace, and justice. 

• Achieving SDGs and their universality would be possible through easily available 
data from affordable sources such as remote sensing images and readily available 
sources. 

• Earth observation plays a crucial role in monitoring the SDGs, given its cost-
effectiveness on data acquisition on all scales and information richness. 

• Advanced technology/earth observation for assessing, monitoring, and decision-
making is integral in addressing the indicators associated with SDGs. 

• A sustainable society would be better ensured with a proper sustainable devel-
opment plan. In this context, the UN has set up seventeen SDGs to achieve the 
target by 2030. Hence, there will be a future need to develop new methods and 
techniques to process enormous earth observation data of various sizes, sources, 
and formats. 

• The recent advancement in big data analytics, IoT, AI, etc., could play a mean-
ingful role in reaching SDGs set up by many developed and developing countries 
through Spatial Decision Support Systems. 
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Chapter 2 
Comparison of Maximum Likelihood, 
Neural Networks, and Random Forests 
Algorithms in Classifying Urban 
Landscape 

Akanksha Balha and Chander Kumar Singh 

Abstract Land use land cover (LULC) is a significant component of remote 
sensing since it is employed in a variety of analyses, from change detection to 
geographic modeling. As a result, creating an accurate LULC map is critical. 
Three different pixel-based classification algorithms [i.e., maximum likelihood (ML), 
neural networks (NN) and random forests (RF)] were utilized to examine their rela-
tive performance in generating remotely sensed LULC maps in the current study. 
The research was carried out using high-resolution satellite images. The classifica-
tion results are evaluated using accuracy measures derived from the confusion matrix. 
The findings suggest that it is difficult to achieve higher accuracy in classifying large 
urban areas using a 5 m resolution satellite dataset. The comparative results indicate 
that random forests have outperformed ML and NN in classifying the urban land 
cover using a high-resolution image. The user and producer accuracies of LULC are 
found to show no particular trend with any classification algorithm. 

Keywords LULC · Pixel-based classification · Maximum likelihood · Neural 
networks · Random forests 

2.1 Introduction 

Land use land cover (LULC) gives a sense of landscape and has been widely used 
in planning for resource management using remote sensing (Gondwe et al. 2021; 
King 2002). The land cover is an important component that influences different 
aspects of the physical and human environment, affecting ecological systems (Foody 
2002; Gondwe et al. 2021). The rising availability of satellite data, as well as 
improved knowledge of remote sensing technology’s potential applications, provide 
the required push for monitoring land cover change. The combination of geographic 
information systems (GIS) and deep learning with remote sensing will give the tools
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needed for land cover mapping (Arndt and Lunga 2021; Geneletti and Gorte 2003). 
Satellite image classification is critical in many remote sensing applications (Wang 
et al. 2021). Automated image classification is one of the simplest and most preferred 
methods for preparing an area’s land use land cover (LULC) (Rozenstein and Karnieli 
2011). 

Appropriate classification algorithms are required to obtain information from 
satellite data (Chandra and Bedi 2021). Pixel-based classification, a conventional 
method of preparing LULC, relies on spectral data recorded as digital numbers (DN) 
in each pixel, with each pixel representing a different feature on the earth’s surface. 
Over the last few decades, a variety of classification algorithms have been created 
and (Lu and Weng 2007) provide a summary of these techniques. There are two 
types of classifiers: basic and advanced. K-Means, ISODATA, MLC, and minimal 
distance to means are just a few of the popular categorization algorithms (Erdas 
Inc 1999; Lillesand and Kiefer 1999; Mather 2004). The artificial neural network 
(ANN) is an example of an advanced categorization system (Verbeke et al. 2004). 
Selecting a good classifier is important to achieve increased classification accu-
racy (Chandra and Bedi 2021; Lu and Weng 2007). Their findings show that the 
hybrid technique (73.5%) outperformed the unsupervised (70.67%) and supervised 
(60.83%) algorithms. (Srivastava et al. 2012) compared three pixel-based classifi-
cation approaches—maximum likelihood (MLC), support vector machine (SVM), 
and artificial neural network (ANN)—using low-resolution Landsat TM/ETM+ 
pictures and found ANN to be a stronger classifier than SVM and ML. (Rozenstein 
and Karnieli 2011) used a low-resolution Landsat TM image to assess supervised 
(ML), unsupervised (ISODATA), and hybrid pixel-based categorization techniques 
(developed by combining spectral signatures from supervised and unsupervised 
classification). 

Although higher resolution image contains more information than lower reso-
lution images, pixel-based classification is a hurdle with high-resolution images 
(Cleve et al. 2008). Many features in a limited space in an urban region can be 
caught precisely in a greater spatial resolution image; however, unlike natural land-
scapes, this increased level of detail generates congestion in the intricacies of urban 
elements in the context of spectra (Arndt and Lunga 2021; Myint et al. 2011, 2006). 
This occurs as pixel-based classification only considers spectral data and ignores 
spatial data, as it is a critical characteristic in object-based classification (Benz et al. 
2004; Duro et al.  2012; Myint et al. 2011; Walter 2004). “Mixed pixel problem” or 
“salt and pepper effect” in pixel-based categorization is produced by similar spectra 
from various characteristics in urban areas such as roads, rooftops, buildings, other 
bright surface objects, sidewalks, etc. (Cleve et al. 2008; Kelly et al. 2004; Myint 
et al. 2011; Ouyang et al. 2011). Consequently, spectral variability based on intra-
class increases, the statistical separation between classes decreases, which leads to 
poor classification accuracy and misclassification (Su et al. 2004). The utilization of 
RF, NN, and MLC techniques for land cover mapping in the urban dominated area 
is investigated in this work. One can compare the performance of RF, NN, and MLC 
to achieve this goal.
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2.2 Study Area 

The study area chosen is Delhi, the capital city of India (Fig. 2.1). Delhi is situated 
between 28.40° and 28.88° N and 76.84° and 77.34° E. 

The states of Uttar Pradesh and Haryana share a border with Delhi. The Indo-
Gangetic alluvial plains run north and east of Delhi, west of the Thar Desert, and 
south of the Aravalli hill ranges. 

Delhi covers an area of 1483 km2. The Aravalli Range, the Yamuna River, and 
the alluvium plains between them make up the physiography of Delhi. Low ridges, 
isolated hills, and huge moderately undulating plains characterize the region’s geog-
raphy. At the ridge, the height ranges from 332 m above sea level to 62 m at the 
Yamuna (Central Ground Water Board (CGWB) 2016). The average annual rainfall 
in Delhi is 611.8 mm, with the monsoon season (July–September) accounting for 81 
percent of the total (Central Ground Water Board (CGWB) 2016). The remainder of 
the annual precipitation falls as winter rain. A year is divided into four seasons based 
on temperature: in the cold season (November end–March mid), (ii) the hot season 
(March mid – June end), (iii) the monsoon season (July–September), and (iv) the fall 
season (October and November). The region of Delhi is heavily urbanized, with agri-
cultural areas dominating the southwest and northwest (Central Ground Water Board 
(CGWB) 2016). The agricultural region is constantly changing as land is converted 
for various purposes. The ridge is the city’s most distinguishing feature. The popu-
lation of Delhi has increased from <2 million in 1901 to more than 16 million in

Fig. 2.1 Study area: Delhi 
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2011. This is due to the urbanization, which is caused mainly due to immigrating 
population excellent job opportunities in the city and its nearby towns of the National 
Capital Region (NCR) (DDA Delhi Development Authority 2017). The metropolis 
has a population of 29 million people and is expected to reach 36 million by 2030 
(United Nations 2018). 

2.3 Methodology 

2.3.1 Preprocessing 

For this study, we have used satellite images of LISS IV of the year 2016. The image 
was procured from National Remote Sensing Centre (NRSC), ISRO. The images are 
of a higher spatial resolution of 5 m. The image was preprocessed (haze reduction) 
using ERDAS 2015 (Geospatial 2016) to reduce the haze and increase the contrast of 
the image. Further, the preprocessed image scenes were mosaicked, and the resultant 
image was subset to the boundary of Delhi to obtain a high-resolution satellite image 
of Delhi. 

2.3.2 Classification Algorithms 

In this study, the performance of three classification algorithms, i.e., maximum like-
lihood (ML), neural network (NN), and random forest (RF) are to be compared, 
which are discussed below in brief. 

(i) Maximum likelihood algorithm is dependent on Bayes’ theorem of decision 
making which is expressed as Eq. (2.1). ML outperforms other parametric 
classification techniques when dealing with normally distributed data (Otukei 
and Blaschke 2010; Srivastava et al.  2012). However, it may not produce good 
results for non-normally statistically distributed data. 

D = ln(ac) − [0.5 ln(|covc|)] − [0.5(X − Mc)T (covc − 1)(X − Mc)] 
(2.1) 

where 

D is the likelihood, 
X is the measurement vector of the candidate pixel, 
c is a particular class, 
ac is the probability percent of any candidate pixel to be a member of class 
c, 
covc is a covariance matrix comprising pixels belonging to the class sample,
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Mc is the mean of the sample of class c, 
|covc| is the determinant of covc, 
ln is a natural logarithm function, 
cov−1 

c is inverse of covc, 
T is the transposition function. 

(ii) Neural network doesn’t require data of any specific statistical distribution 
(Srivastava et al. 2012; Shao and Lunetta 2012; Tu  1996; Zhang 2014). In 
the empirical and black box nature, the probability of overfitting and higher 
computation is regarded as the demerits of the algorithm. The logistic activation 
function used is expressed as Eq. (2.2) 

o j = 1/
(
1 + e−λnet j

)
(2.2) 

where λ is a gain factor and oj is the output j; 

net j =
∑

i 

w ji  oi 

where oi is the output of external unit i and wji is the interconnection channel 
weight to unit j from i. 

(iii) Random forests, which are robust to hefty datasets and don’t need data of any 
specific statistical distribution, classify based on the voting system (Hayes et al. 
2014; Long et al. 2013; Puissant et al. 2014; Rodriguez-Galiano et al. 2012). 
The black box nature of the algorithm is its demerit. The time required for 
training random forests is expressed by Eq. (2.3). 

cT
√
MN  log N (2.3) 

where T is the number of trees, M is the number of variables, c is a constant 
dependent on the data complexity, and N is the number of instances. 

2.3.3 Image Classification 

The classification of the satellite image was processed in R v. 3.3.2 (R Development 
Core Team 2016). For image classification in R, different add-on packages such as the 
“rasclass” package for ML (Wiesmann and Quinn 2011), “randomForest” package 
(Liaw and Wiener 2002) for RF and “nnet” package for NN (Venables and Ripley 
2002) were used in R. A training dataset comprising spectral signatures from more 
than 2000 pixels was prepared and used for classification. The same set of training 
pixels was employed for all algorithms. The LULC classes identified in the image 
to prepare the LULC map include dense vegetation, built-up, waterbody, open land, 
sparse vegetation, sediment, and scrubland. To evaluate the classification results from
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different algorithms, an accuracy assessment using a confusion matrix was carried 
out in ERDAS 2015. 

2.4 Results and Discussion 

Figure 2.2 depicts the LULC maps classified using all of the techniques investigated. 
The generated error matrix was used to assess the accuracy of all the LULC maps. 

2.4.1 Comparison of Overall Accuracies 

The LULC maps classified using ML, RF, and NN are shown in Fig. 2.2. The results of 
the accuracy assessment reveal that the overall accuracy of the LULC maps classified 
using ML, RF, and NN is approximately 49.4%, 56.8%, and 39.7%, respectively. 
Though the obtained accuracy is lower than the acceptable accuracy (Anderson et al. 
1976). We aim only for the comparative performance of algorithms rather than further 
utilizing the maps for any assessment. To avoid any biases in the comparison, post-
classification processing including filtering, recoding, or was not done. The findings 
derived from overall accuracy reveal that RF is found as the best classifier followed 
by ML. NN is found to produce the least accurate LULC.

Fig. 2.2 LULC is classified using i maximum likelihood (ML), ii neural network (NN), and iii 
random forests (RF) 
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2.4.2 Comparison of Producer’s and User’s Accuracies 

The producer (PA) and user accuracy (UA), as well as overall accuracy for each 
LULC, were calculated (Table 2.1). The producer’s and user’s accuracies of LULC 
classes do not show any particular trend with any classification algorithm. Concerning 
producer’s accuracy (PA), RF has shown higher accuracy with water body, built-up, 
and scrubland; NN has shown higher accuracy with dense vegetation, fallow land; 
ML has shown higher accuracy with sparse vegetation, cropland, open land, and 
sediment. 

Concerning user’s accuracy (UA), RF has shown higher accuracy with cropland, 
dense vegetation, waterbody, open land, and built-up; ML has shown higher accuracy 
with sparse vegetation, fallow land, scrubland, and sediment.

Table 2.1 Accuracy assessment results of different classification algorithms 

LULC classes Accuracy ML NN RF 2016 

Water PA 74.1 48.4 80.7 

UA 58.9 83.3 96.2 

Built-up PA 46.6 68.9 75.6 

UA 59.4 61.6 73.4 

Dense vegetation PA 84.3 84.4 75.0 

UA 54.0 43.6 57.1 

Sparse vegetation PA 48.3 9.9 42.9 

UA 41.9 13.0 45.4 

Cropland PA 51.6 – 48.4 

UA 74.4 – 85.7 

Fallow land PA 26.7 57.0 52.3 

UA 44.2 35.3 39.1 

Open land PA 44.4 3.2 30.2 

UA 52.8 50.0 70.4 

Scrubland/ forest PA 65.6 62.5 71.9 

UA 39.6 20.2 35.4 

Sediment PA 70.0 – 10.0 

UA 17.5 – 16.7 

OA 49.4 39.7 56.8 

Kappa 0.4 0.2 0.4 

PA producer’s accuracy and UA user’s accuracy 
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2.5 Conclusion 

This research work presents a comparative analysis of three popular pixel-based 
algorithms. Nine LULC classes consisting of built-up, waterbody, sparse vegetation, 
dense vegetation, sediment, open land, and scrubland are identified. The compar-
ative performance of classification algorithms is made without post-classification 
processing of LULC to avoid biases in results. The assessment of the algorithms 
is conducted using a confusion matrix derived from overall accuracy. The results 
reveal that it is difficult to achieve higher overall accuracy in classifying urban areas. 
The reason for this is attributed to heterogeneity in the urban landscape. The RF has 
performed better followed by ML and NN. Hence, for pixel-based classification of 
an urban area using satellite images of 5 m spatial resolution, an RF algorithm is 
recommended. Further, the study has also attempted to evaluate the algorithms based 
on the producer’s and user’s accuracy. 
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Chapter 3 
Crowd-Assisted Flood Disaster 
Management 

S. Koswatte, K. McDougall, and X. Liu 

Abstract Natural disasters, including floods, cause significant damage to people’s 
lives and properties and, in recent years, the frequency, complexity, and severity of 
these events appear to be increasing. Floods, in particular, cause more devastation, 
death, and economic impact than any other natural disaster. Disaster reporting has 
now progressed from official media reporting sources to real-time on-site citizen 
reporters. Crowd-generated content related to disasters and other events is usually 
identified as Crowdsourced Data (CSD). This data is often termed geospatial CSD 
or Volunteered Geographic Information (VGI) when the geospatial properties are 
provided. With advances in technology, the opportunity for citizens to report incidents 
as CSD is now freely and widely available. However, the quality of CSD remains 
problematic as it is captured by people of different backgrounds and abilities on a 
variety of platforms. In general, CSD is deemed unstructured, and its consistency 
remains poorly described. The improvement and confirmation of quality are very 
important for CSD use in critical applications such as flood disaster management. 
This chapter discusses the background, challenges and opportunities, applications, 
and quality of CSD along with quality evaluation processes tested on the Ushahidi 
Crowdmap data of the 2011 Australian floods. CSD location availability analysis, 
relevancy analysis using the Geographic Information Retrieval (GIR), and credibility 
analysis using a naïve Bayesian network-based model are also discussed. The results 
of this study revealed that 59% of the ABC’s 2011 Australian flood Crowdmap reports 
had location availability when the duplicate data were removed. They also show that 
GIR techniques and that naïve Bayesian models can be successfully applied to assess 
the CSD’s relevancy and credibility. The fit-for-purpose analysis of CSD for disaster 
management can significantly improve CSD’s precision, reliability, currency, and 
ability to supplement authoritative data sources by filling information gaps.
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3.1 Introduction 

Natural disasters such as floods, hurricanes, earthquakes, tsunamis, droughts, and 
wildfires have become more common and more serious in recent years. The Inter-
national Federation of Red Cross and Red Crescent Societies’ (IFRC) latest global 
disaster survey (IFRC 2020) reported that at least 410,000 people were killed during 
the last ten years due to extreme weather and climate-related disasters. The 2020 
Australian bushfires killed at least 34 people, with 5900 buildings destroyed, and 
it was estimated that between 0.5 and 1.5 billion native animals were killed (van 
Oldenborgh et al. 2021). The Nepal earthquake on 25th April 2015 killed over 8700 
people and injured more than 21,000 people. It devastated many historical sites 
and destroyed over 500,000 houses worth billions of dollars (OCHA 2015). Floods 
account for 30% of all natural disasters worldwide, causing more destruction, fatal-
ities, and economic hardships than any other event (Degrossi et al. 2014; Helmrich  
et al. 2021; Songchon et al. 2021). 

In responding to natural and manmade disasters, researchers and scientists are 
now identifying new tools and techniques for improving existing disaster manage-
ment systems. In general, disaster management is challenging and cannot be handled 
efficiently by simply supplying more and more resources. It is impossible to accu-
rately predict the occurrence, frequency, and severity of these natural disasters, so 
effective and timely management to minimize further threats to lives and proper-
ties is needed. Disaster management strategies need to be dynamic. A major flood 
event may develop gradually over a period of days while a cyclone may necessitate 
a more rapid management response. Mitigation initiatives such as the introduction 
of awareness campaigns, the strengthening of existing vulnerable systems, and the 
preparation of disaster recovery strategies will minimize human and property losses 
and make communities safer and more resilient (IFRC 2020). 

In disaster management decision-making, having reliable and up-to-date geospa-
tial information is critical. The uncertainty of real-time event information can cause 
delays or lead to incorrect disaster management decisions, while direct feedback from 
those who have been affected by disasters can help others save lives and properties. 
Readily and freely available online mapping tools and convenient modern location 
sensors have encouraged citizens to report these events, often in real-time with the 
assistance of online maps (Songchon et al. 2021). This type of citizen-reported data 
is often up-to-date and, hence, become a valuable source for disaster management 
purposes. 

CSD that includes location information can be thought of as Volunteered 
Geographic Information (VGI) (Goodchild 2007), “crowdsourced geospatial data” 
(Heipke 2010), or “user-generated geographic content” (Fast and Rinner 2014) and 
is identified as a subset of CSD. Although there are quality and credibility problems
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associated with CSD, it is more current and diverse than traditional geographic infor-
mation. In some instances, when collected and managed properly, CSD outperforms 
official sources with respect to accuracy and context (Criscuolo et al. 2016). Current 
research into CSD is investigating potential quality improvement methods through 
numerous approaches, enabling CSD to be utilized in critical applications such as 
those for flood disaster management. 

This chapter provides an overview of crowdsourced data and the role of the crowd 
in disaster management, including crowd-generated maps, with a specific focus on 
flood disasters. It discusses three quality aspects of CSD (location quality, credibility, 
and relevance) and offers a case study that analyzed crowd responses to a 2011 
Australian flood disaster based on these three quality characteristics. The chapter is 
organized as follows. Section 3.2 explores the background of crowdsourced data, 
and Sect. 3.3 discusses challenges and opportunities in CSD. Section 3.4 introduces 
the applications of CSD, and Sect. 3.5 explores the quality and performance of 
CSD. Section 3.6 presents the case study on flood disaster management and, finally, 
Sect. 3.7 provides some conclusions regarding the utilization of fit-for-purpose CSD. 

3.2 Background of Crowdsourced Data (CSD) 

The technological advances in computing, information systems, positioning, and 
telecommunication have encouraged the community to engage in capturing disaster-
related CSD (Helmrich et al. 2021; Songchon et al. 2021; Kankanamge et al. 2020). 
Moreover, the democratization of mapping tools and open-source initiatives have 
supported this trend toward geospatial CSD production. The success of crowd-
sourcing geospatial data is enabled by two basic technologies: (a) geo-referencing, 
either through global Navigational Satellite Systems (GNSS) or cellular towers; and 
(b) Web 2.0 development, which includes communication often made through IT 
platforms (Heipke 2010; Blohm et al. 2018). 

Today, citizens “share and learn from their experiences through text (microblogs), 
photos (Flickr, Picasa, Panoramio), and maps (Google Maps, Google Earth), not 
only finding but also providing information” (Kankanamge et al. 2020; Spinsanti 
and Ostermann 2010). In this context, people engaged in CSD production range 
from novices to experts in particular fields; with data originating from different 
sources including geotagged photos, synchronous microblogging, social networking 
applications, sensor measurements, complete topographic maps, and other platforms 
(Antoniu 2016). Niu and Silva (2020) identified the key sources for CSD as (a) social 
media posts (b) Points of Interest (POIs) and (c) collaborative contributions through 
web-based forums. 

Microblogs have recently become a popular service where users can broadcast 
short messages (generally less than 248 characters) conveniently using smartphones 
or similar devices. Many people use microblogging services such as Twitter and
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Sina Weibo to share their information by posting short messages. Researchers have 
identified the opportunity of utilizing these services as social sensors for disaster-
related actions including event detection through location inference. 

Combining microblogging messages with locations provides the opportunity for 
understanding the impact of the disasters in society. A mobile device equipped with 
a location sensor (such as GNSS) can be used to identify geolocations. A tweet 
may be geotagged according to the latitude and longitude of the location by using a 
location sensor-enabled device. Using the geotag function can attach the latitude and 
longitude of the user’s current location to each message as a geotag. However, most 
users are reluctant to enable this function because of privacy concerns. Therefore, 
most messages do not have geolocation information which limits their usefulness for 
rapid response to a sudden disaster. Researchers have begun testing mechanisms to 
determine the location included in a message’s content. 

3.3 Challenges and Opportunities in CSD 

Researchers have identified several CSD concerns including crisis location infer-
encing issues, erroneous or fake reports, disagreements between amateur and expert 
opinions, false alerts in information, errors in handling duplicate reports (such as 
retweets), and diversity in tools and technologies used in crowdsourcing (Ogie et al. 
2019). 

Although CSD quality assessment is critical in crowd-supported disaster manage-
ment, many researchers have identified that defining CSD quality assessment parame-
ters is challenging. The use of conventional geospatial data quality assessment param-
eters is not practical due to CSD’s highly unstructured nature, its varying quality, 
and undocumented metadata. However, Leibovici et al. (2017) suggested other than 
completely rejecting the International Organization for Standardization (ISO) quality 
measures for CSD quality assessment, it is better to decouple the Quality Assessment 
(QA) and Data Conflation and Data Fusion (DCDF) processes as much as possible. 
However, the current approaches in this regime are immature. 

Disaster management decisions are typically based on the availability of current, 
reliable, and accurate data. It is critical to have a good understanding of the ongoing 
disaster before moving to make key disaster management decisions. Social media 
has made it easy to obtain up-to-date information during a crisis (Helmrich et al. 
2021; Kankanamge et al. 2020), however, the quality of this information can be 
variable. From a consumer’s perspective, high-quality data should be “intrinsically 
good” and “contextually appropriate” to the task at hand, “clearly presented” and 
“accessible” (Liaw et al. 2021; Wang and Strong 1996). Measuring intrinsic quality 
is more relevant to conventional geospatial data, and the judgment of extrinsic quality 
is more useful to crowdsourced type data. Generally, the refresh rate of CSD (i.e., the 
update frequency) is higher than conventional authoritative data, particularly when
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they are associated with dynamic events. As uncertainty is a key issue related to 
CSD, quality assessment is vital before this data is utilized in disaster management 
decision-making (Koswatte et al. 2015). 

The rapid detection of a particular event, such as a flood, and its accurate location 
is very important in disaster management. An event is identified as something that 
happens at a specific time and location, with all the associated circumstances and 
unavoidable consequences. In today’s world, such events are frequently discussed 
and communicated via social media (Helmrich et al. 2021; Songchon et al. 2021). 
Researchers are currently working on emergency event detection and related studies 
using microblog message analysis to identify landslides (Musaev et al. 2014), floods 
(Shi et al. 2016), earthquakes, tsunamis (Chatfield and Brajawidagda 2012), and 
other burst detection (Karimi et al. 2015). In general, event detection algorithms are 
chosen for their ability to predict particular events rather than all possible events in 
a given timeframe (Paltoglou 2016). 

In an emergency such as a flood, knowing the accurate location of the incident 
is extremely helpful in determining where to dispatch the required resources and to 
support victims. The identification of location data in microblog posts has inspired 
a wave of interest in recent years (Lingad et al. 2013). Given the usual confusion 
associated with non-geographic entities, identifying place names embedded in the 
text can also be difficult. As indicated previously, the location availability of Twitter 
messages (Tweets) has been described as limited. Furthermore, connecting messages 
from social networks and users with locations is a difficult task. Users can choose 
whether or not to connect to a place on services like Twitter and Facebook (Davis 
et al. 2011). The locations hidden in crowd-generated content such as tweets can 
sometimes be extracted using various Natural Language Processing (NLP) tools 
including Stanford NER, OpenNLP, Twitter NLP, and YahooPlaceMaker (Lingad 
et al. 2013). 

3.4 Applications of CSD 

Crises are generally first seen through the “eyes” of personal mobile phone cameras 
and shared in near real-time to worldwide media broadcasting organizations instead 
of through traditional communication channels. This allows emergency information 
to reach both the general public and disaster responders in a matter of minutes. The 
crowdsourced data may include maps generated through crowd responses that are 
associated with location information and becomes a valuable asset for awareness and 
decision-making. 

Ushahidi is a crowdsourced mapping platform created to capture crowd input 
via cell phones and emails (Hirata et al. 2018; Pánek et al. 2017). Users can report 
incidents via SMS (Short Message Service), email, and the Internet, among other 
methods. Its popularity has grown over time, and it has been deployed successfully in 
a variety of disasters around the world. The most noticeable benefit is the simplicity 
with which mobile devices can be used to monitor events on the spot. Similar applica-
tions used in real-world disaster scenarios are “CrisisTracker” developed for tracking
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Table 3.1 Characteristics of Ushahidi Crowdmaps used in three natural disasters (McDougall et al. 
2012) 

Characteristic Queensland floods Christchurch 
earthquake 

Japanese Tsunami 

Site establishment 
time 

Approximately 48 h 12–24 h 6–12 h 

Utilization Alerts, photos, 
blocked roads, 
recovery points 

Hazards, road 
closures, drinking 
water, building 
damage 

Trapped people, 
dangerous areas that 
should be avoided, and 
supplies of food and 
clean water 

Lifecycle Active for 
approximately 
5 weeks 

Active for 
approximately 
3 weeks 

Active 8 months after 
the tsunami 

Reported quality 99% verified 
reports 

Unknown 6.1% verified 

Availability of site Data currently 
accessible 

Site not available Active 

Number of reports 98,000 >100,000 >12,600 

armed group activities, “CogniCity” to report urgent urban infrastructure issues, 
“TweetTracker” for monitoring and analyzing tweets for humanitarian and disaster 
relief, and “Twitcident” for manipulating crisis-related information (Ogie et al. 2019; 
Poblet et al. 2018). 

Natural disasters appear to be becoming more common and their impact more 
severe. A series of devastating flash floods struck Australia (particularly Queens-
land) between December 2010 and February 2011. In February 2011, a magnitude 
6.3 earthquake hit Christchurch in New Zealand, killing 181 people and causing over 
NZ $20 billion in property damage. In March 2011, Japan was struck by a massive 
earthquake with a magnitude of 8.9, 100 times stronger than the Christchurch earth-
quake, killing over 20,000 people and causing more than $300 billion in property and 
infrastructure damage (McDougall et al. 2012). Interestingly, in all these disasters, 
the Ushahidi platform was deployed successfully. Table 3.1 shows the characteristics 
of the Ushahidi Crowdmaps used in these three disasters. 

Information required for flood disaster management can be gathered through a 
variety of collaborative activities such as knowledge sharing through social networks 
(eg., Twitter, Facebook), participatory sensing (e.g., citizen observatories), and 
participatory mapping (e.g., OpenStreetMap,1 Wikimapia2 ) (Horita et al. 2015). The 
PetaJakarta.org3 system is a unique example providing social media-based urban 
data collection facilities to “solicit, gather, sort, and map” citizens’ reports related to 
flood situations through social media in real-time. This system was developed by the

1 https://www.openstreetmap.org. 
2 https://wikimapia.org. 
3 https://petajakarta.org/banjir/en/index.html. 

https://www.openstreetmap.org
https://wikimapia.org
https://petajakarta.org/banjir/en/index.html
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SMART Infrastructure Facility at the University of Wollongong, Australia in collab-
oration with the DKI Jakarta Regional Disaster Management Agency and Twitter Inc. 
(Ogie et al. 2019). A mobile application developed through a case study from the 
COBWEB4 project enabled volunteers to report flood inundations via mobile phones 
(Leibovici et al. 2017). Another example of CSD applications is the AGORA-DS 
system developed by Horta et al. (Horita et al. 2015) which is a Spatial Decision 
Support System (SDSS) supporting decision-making during flood disaster manage-
ment. Although there are numerous examples for collecting useful crowd inputs 
during disaster situations, the mechanisms for converting this information into quality 
spatial datasets are limited. 

3.5 Quality and Performance of CSD 

The technical advancements in mobile communication, positioning technology, 
smartphone apps, and other infrastructure innovations that support easy-to-use 
mobile applications, have made VGI production easier. However, its potential bene-
fits and uses have been limited by data quality concerns including data credibility, 
reliability, and relevance, as well as validity, data structures, and missing metadata. 

3.5.1 Credibility of Crowdsourced Data 

The quality of crowdsourced data can be characterized using measures (often aligned 
with ISO specifications) and indicators (often dependent on biased and amateur 
contributions which are difficult to measure) (Antoniou and Skopeliti 2015; Senaratne 
et al. 2016). Basiri et al. (2019) categorized CSD quality assessment methods into: (a) 
comparison with authoritative data, (b) machine learning and pattern identification 
applied to users and their inputs, and (c) gatekeeping and weighting user inputs. 
They also highlighted spatial bias in crowdsourced contents and the lack of extensive 
analysis of these biases in CSD-related projects. In CSD, the information provided by 
the contributors cannot always be trusted as their skills, knowledge, and experiences 
vary greatly, and determining the contributors’ reputations may not be practical. 
Volunteers in a crisis are often incredibly diverse, and their contributions are often 
only temporary. As a result, unlike many Twitter users with a long history of activity, 
profiling these contributors is difficult. Therefore, determining the credibility of the 
given data for potential decision-making use is a major challenge. 

According to Hovland et al. (1953), credibility is defined as “the believability of a 
source or message,” which consists of two dimensions: trustworthiness and expertise. 
However, the aspects of trust and expertise, as identified by Flanagin and Metzger 
(2008), can also be regarded as subjectively perceived as the study of credibility

4 http://www.cobwebproject.eu. 

http://www.cobwebproject.eu
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is interdisciplinary. While the scientific community considers credibility to be an 
objective property of information quality, communication and social psychology 
researchers consider credibility to be more of a matter of perception (Flanagin and 
Metzger 2008; Fogg and Tseng 1999). 

A Bayesian Network-based credibility assessment model developed by Kim 
(2013) for assessing the 2010 Haiti earthquake’s CSD compared the results of 
the earthquake damage assessment with official information. The study showed the 
ability to identify microscopic effects on individual data which may be useful for 
understanding the quality and macroscopic variations of overall harm patterns. More-
over, the model was determined to be more appropriate for post-disaster manage-
ment and hence indicates that a similar model may be applicable to CSD credibility 
detection for post-flood disaster management. 

3.5.2 Relevance of Crowdsourced Data 

Another important aspect of CSD to be tested before use in critical applications such 
as flood disaster management is its relevance or fitness for the purpose. As discussed 
previously, during a disaster event, people often use microblogs or dedicated crowd-
sourcing platforms such as Crowdmaps to communicate and add comments to others’ 
posts. However, these communications are sometimes tangential to the key disaster 
event, and the CSD collections may contain content that is not relevant. Assessing 
the relevance of the CSD content for a selected purpose is important for the removal 
of irrelevant content. 

The concept of relevance is highly cognitive and multidimensional (Borlund 
2003), and it has long been explored in a variety of domains including but not limited 
to artificial intelligence and natural language processing, philosophy, psychology, 
information retrieval, and information science. Saracevic (1996) identified five types 
of relevance based on the relevant literature, namely (1) cognitive or topical rele-
vance, (2) pertinence or intellectual relevance, (3) algorithmic relevance, and (4) 
affective or motivational relevance, and (5) situational relevance. Situational rele-
vance, that is the “usefulness of the viewed and assessed information” considering 
a particular task and the information needs of the user (Andrade and Silva 2006), is 
more suited to determining the relevance of CSD in the context of post-flood disaster 
management. 

3.6 Case Study: Flood Disaster Management 

Floods are often caused through intense or protracted rainfall events that result in 
creeks and rivers overflowing their banks. Flash floods are the result of extremely 
heavy rainfall and are very common in Australia. Similar to other natural disas-
ters, the risks caused by floods often develop quickly and recede over time. Disaster
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management teams may be required to manage different areas of operations including 
search and rescue for lifesaving, infrastructure and resource management, resettle-
ment, rehabilitation, and communication during and after a flood. Prioritizing these 
activities is based on the importance and level of risk at each stage of the flood. 

In January 2011, the state of Queensland, Australia, “experienced its second-
biggest flood since the beginning of the twentieth century” (van den Honert et al. 
2011). It was caused by an extreme weather event due to the influence of a La Nina 
condition (a large-scale atmospheric phenomenon across the Pacific Ocean). The 
flood of January 2011 was Australia’s first major flood since 1974 (Box et al. 2016). 
This severe flooding affected nearly 90 towns and 200,000 people, claiming 38 lives 
and costing more than AUD$ 2 billion. Citizen involvement through crisis reporting 
was very high in the 2011 Queensland, Australia flood disaster. More than 35,000 
tweets (based on the #qldfloods hashtag) were sent during the 10–16 January 2011 
period, with more than 11,600 of them on 12th January alone (Bruns et al. 2012). 

During the early stages of the event, the Australian Broadcasting Corporation 
(ABC) deployed a customized Ushahidi-based Crowd-mapping platform (Fig. 3.1) 
to collect related information. Over 230,000 site visits were reported in just 24 h, 
indicating that the site was well-received by the public. According to ABC figures, 
the site received approximately 1500 reports, with almost 500 from the public and 
another 1000 from ABC moderators. The majority of reports were submitted via the 
online interface, but a small percentage were sent through email, Twitter, and SMS.

3.6.1 CSD Location Availability 

The location availability of CSD is important in applications such as flood disaster 
management. However, not all CSD comes with clear location information as the 
enablement of location information is usually a deliberate action. Although location 
sensors are very common in today’s handheld devices, the location availability of 
crowd-generated content such as tweets remains as low as 1–3% (Ozdikis et al. 2018; 
Koswatte et al. 2016) due to the location option of the application being disabled. 
Ushahidi Crowdmap reports are usually submitted by mobile devices with location 
sensors, or if the data is added by a user registered on the Crowdmap, the position 
can be marked graphically on the Crowdmap interface. In each case, the position is 
encoded in decimal degrees of latitude and longitude. 

As identified by this research, 33% (704 out of 2136) of the reports submitted 
via the ABC’s QLD flood crisis map between the 9th and 15th of January 2011 
were location-enabled, while the remaining reports consisted of useful information 
such as a description of the event excluding location (Fig. 3.2a). Crowdsourced 
datasets may include many duplicate reports such as retweets, which are forwarded 
messages of the original posts. In the QLD flood crisis map reports, after duplicate 
removal, there were only 663 unique reports and 391 reports where the location was 
enabled. Therefore, the location availability of Crowdmap reports was 59% of the 
data (Fig. 3.2b).
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Fig. 3.1 ABC’s Australian floods Ushahidi Crowdmap (Potts et al. 2011)

Fig. 3.2 Location availability of a full Crowdmap reports, b duplicates removed Crowdmap reports
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CSD 

Geo-parsing, Reference Resolution, 
Grounding References 

Indexing and Relevance 
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Combining Geo-thematic Relevance and Re-ranking 

Geo-thematic Relevance ranked CSD 

Pre-ProcessingPre-Processing 

User Query 

Thematic Scope Analysis Geographic Scope Analysis 

Fig. 3.3 CSD relevance detection approach adapted from Zaila and Montesi’s (2015) GIR  
architecture 

Geographic Information Retrieval (GIR) approaches can be used to analyze the 
CSD’s relevancy. The suitability of each solution, however, is determined by the data 
and the task at hand. 

Figure 3.3 shows the relevance analysis approach which was adopted from the 
Geographic Information Retrieval (GIR) architecture proposed by Zaila and Montesi 
(2015). In the modified architecture, the CSD was analyzed based on two key scopes: 
the thematic scope, and the geographic scope. In each scenario, CSD pre-processing 
was required to prepare the unstructured raw dataset for subsequent analysis using 
the steps are explained below: 

1. Cleaning: removing unwanted content (e.g., numbers, units, time, date, hashtags, 
Twitter user accounts, and URLs) 

2. Tokenization and Normalization: split the sentence into tokens, analyze and 
convert abbreviations and short forms commonly used in Twitter messages to 
normal form (e.g., B4 >> Before, Nxt >> Next, Cnr >> Corner) 

3. Stemming and Lemmatization: adjusting to the base form (e.g., closed >> closing 
>> close) 

4. Stop word removal: common English words (e.g., of, and, the, etc.) 
5. Removal of non-words: numbers, punctuations, whitespaces (e.g., tabs, newlines, 

spaces). 

Thematic Scope Analysis 
The thematic scope relevance analysis was performed using the Lucene5 IR system 
which is an open-source keyword matching information retrieval system built on

5 http://lucene.apache.org. 

http://lucene.apache.org
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the standard Term Frequency—Inverse Document Frequency Vector Space Model 
(TF-IDF VSM) model (Overell 2009). 

The existence of relevant words in a document indicates the document’s relevancy 
for a particular purpose. The weighting of the words can be determined by the 
significance of the task at hand in terms of information processing. The TF-IDF model 
is a widely used weighting tool (Bounabi et al. 2021). In this model, higher weights 
are applied to words that occur more often in a document. The more frequently a 
word (t) appears, the more important it is in the document (m). More commonly 
available words in the entire document collection (M), on the other hand, will be 
given a low weight. 

TF(t) = 
Number of times the term t occurs in a message 

Total number of terms in the message 

IDF(t) = loge 
⎡

Total number of messages 

Total number of messages the terms t exists 

⎤ 

Therefore, the TF-IDF weight for term t in message m in the message collection 
(M) can be denoted as: 

TF-IDFt,m = TFt,m ∗ IDFt,m (3.1) 

where 

TFt,m = 
∑

i∈t 1i=t 

|m| (3.2) 

IDFt,m = log
|M |∑
j∈M 1t∈ j 

(3.3) 

When the TF-IDF (Eq. 3.1) values of document terms are calculated, it represents 
the document in a vector space model. Each vector component represents a TF-IDF 
value of a term in the corpus dictionary. Thematic scope analysis was carried out 
utilizing Java6 programs built on the Lucene API and its standard analyzer. One 
of the Java programs performed the indexing of the dataset and the other program 
performed the searching operations. 

The quality of thematic scope analysis used the Lucene benchmark quality assess-
ment package. According to the Lucene benchmark quality package results, the Mean 
Average Precision (MAP) of the quality assessment was calculated as 0.792 which 
is an indication of good system performance for relevance assessment as the value 
of 1 indicates the best performance.

6 https://java.com. 

https://java.com
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Geographic Scope Analysis 
The geographic scope analysis differs from the thematic analysis as it looks to iden-
tify the geographic scope. A natural language processing-based gazetteer lookup 
method was used to perform the geographic scope analysis tasks such as geo-parsing, 
reference resolution, and grounding references. The GATE7 program makes these 
tasks much easier to complete. Pre-processing of a sample of the CSD dataset is 
needed to remove improper content such as duplicates. Tokenizing, stemming, and 
lemmatizing pre-processing operations required for thematic scope analysis cannot 
be undertaken during geographic scope analysis pre-processing because they will be 
conducted within the GATE program when a morphological analysis is performed. 

Various algorithms and methods have been proposed by GIR research for indexing, 
relevance ranking, and merging thematic and geographic scopes. Yu and Cai (2007) 
suggested that it is often advantageous to consider the specificity of query scope in 
assessing CSD thematic relevance. This research implemented the method proposed 
by Yu and Cai (2007) for combining and re-ranking the CSD based on geo-thematic 
query specificity. 

3.6.2 CSD Credibility Analysis: A Naïve Bayesian 
Network-Based Model for CSD Credibility Detection 

The naïve Bayesian Networks are simpler BN-based probabilistic classifiers and can 
be used to calculate the presence of features in corpuses using their interrelations 
(Zamir et al. 2020). 

CSD credibility can be classified using a function (f ) defined as, 

f (m, θ  ) = 
{
tcredible If f (m, θ  ) > T message classified as credible 
tunreliable Else, the message is unreliable 

where m is a CSD post to be classified, θ is a vector of parameters, and “tcredible ” 
and “tunreliable” are status to be assigned to the CSD post based on the pre-defined 
threshold T to the posts. 

An algorithm for the CSD credibility detection based on the naïve Bayesian 
Network was developed for the analysis. The Java programming language was used 
for coding the system within the NetBeans8 Integrated Development Environment 
(IDE). The probability threshold was determined after the initial testing and was set 
at the 0.9 probability level (Threshold = 0.9). 

Figure 3.4 depicts the key steps in the CSD credibility detection approach used 
in this research which was developed based on the naïve Bayesian Network and 
the classical “bag of words” model popular in spam email detection. The ABC’s 
2011 Australian Floods Crisis Map dataset (Ushahidi Crowdmap) was used as the

7 https://gate.ac.uk/. 
8 https://netbeans.org/. 

https://gate.ac.uk/
https://netbeans.org/
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Fig. 3.4 CSD credibility detection workflow 

input CSD. The whole dataset was initially pre-processed to prepare for the training, 
testing, and credibility detection as described above. The system was then trained 
and assessed in two different scenarios, unforced and forced, utilizing the testing 
data set to determine accuracy and performance improvements. 

Once system training and testing was completed to an acceptable classification 
quality, a sample of 433 Ushahidi Crowdmap messages were analyzed for credibility. 
As Fig. 3.5a indicates, 54% (234 out of 433) of the messages were identified as 
credible using an unforced training classification. However, when the system was 
run under forced conditions, 77% (334 out of 433) of the messages were identified 
as credible (Fig. 3.5b). This is a more confident value than the previous result as the 
accuracy and precision of the credibility detection was higher.

3.7 Conclusion 

Any spatial data-dependent project relies on the known quality of the spatial data. 
Rapid identification of appropriate and accurate spatial information is critical in 
disasters, such as floods, to prevent further damage, assist victims, and save lives. 
This work presented various CSD quality checks and improvement methods that are 
suitable for flood disaster management activities. 

Volunteers in crises, in particular, are often extremely diverse, and their efforts are 
often only temporary. As a result, unlike many Twitter users with a long history of 
activity, profiling these contributors is difficult. Determining the credibility of CSD 
messages is a difficult process due to the high degree of heterogeneity in the data,
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Fig. 3.5 Credibility of 2011 Australian floods Ushahidi Crowdmap data a under unforced 
environment b under forced environment

the lack of a standardized data structure, the diversity of the data sources, and the 
minimal metadata supplied. Therefore, new advances must be made to improve the 
quality and reliability of this data. 
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Chapter 4 
Geospatial Big Earth Data and Urban 
Data Analytics 

Chitrini Mozumder and N. S. Karthikeya 

Abstract Today, with the innovations and advancements of technologies and afford-
ability of digital devices there is an explosion of huge amounts of archived and real-
time digital data. This also includes the subset of the “Big Earth Data” which is gener-
ated using multitudinous sources viz., satellites, sensor networks, Internet of Things 
systems, and the hyper-connectivity of our society. It is diversified containing rich 
information across different geographic scales and resolutions. However, a massive 
challenge also exists on how this data has been exploited and explored to understand 
and solve problems in urban areas and cities. Furthermore, data analytics is also used 
for the exploration and analysis of the data sources, what the data represents, and 
transforming the data into information for intelligence creation. The recent evolu-
tionary shift from Geographic Information Systems (GIS) to data analytics, including 
Urban Data Analytics enables us to gain insight into urban processes and answers 
to new and complex questions related to cities and urban areas. Based on above 
discussions, aims of this chapter are to provide insights on the recent trends and 
approaches in Geospatial Big Earth Data sources, uses, and their integration with 
IoT-based Big Data systems for urban studies. It also provides a review on use of 
machine learning and AI as state-of-the-art technologies to analyze the big urban 
earth data for accurate information for better decisions. Furthermore, an attempt is 
also made to discuss the way forward and future research areas and applications. 

Keywords Big earth data · Urban data analytics · Geospatial · Big earth data 
processing · Society 5.0

C. Mozumder (B) · N. S. Karthikeya 
Remote Sensing and Geographic Information Systems, Information and Communication 
Technologies, School of Engineering and Technology, Asian Institute of Technology, Klong 
Luang 12120, Pathum Thani, Thailand 
e-mail: chitrini@ait.asia 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
V. P. Singh et al. (eds.), Application of Remote Sensing and GIS in Natural Resources 
and Built Infrastructure Management, Water Science and Technology Library 105, 
https://doi.org/10.1007/978-3-031-14096-9_4 

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14096-9_4&domain=pdf
mailto:chitrini@ait.asia
https://doi.org/10.1007/978-3-031-14096-9_4


58 C. Mozumder and N. S. Karthikeya

4.1 Introduction 

With global unprecedented increasing trends of urbanization across the world in 
developed, developing, and underdeveloped countries, the population is aggregating 
in urban areas. According to the United Nations (UN) statistics, in 1950s only 30% 
of the world’s population lived in urban areas, which has increased to 55% in 2018. 
Urban areas can be categorized as cities, towns, conurbations, or suburbs based on the 
urban morphology. As the population increases, the needs of urban areas also increase 
in terms of infrastructure, facilities, utilities, goods, and materials. The planners and 
practitioners in urban areas eventually require a big amount of data to make informed 
decisions for sustainable, resilient, equitable, and livable growth. 

In today’s world of optimal hardware and intelligent software, systems are built 
to gather data. Although there is no single agreement on the “big data” definition 
(Mauro et al. 2015; Ward and Barker 2013), a widely accepted description of the 
same is the “large datasets which exceed conventional processing capabilities”. Huge 
amounts of data are being collected in different domains such as banking, health, 
telecommunications, scientific observation, and simulation. A subset of this big data 
is the “big earth data”. Although it is arguable, studies reveal that a higher percentage 
(~80%) of big data is the big earth data (Morais 2012; Vopham et al. 2018). It is also 
estimated that the size of this data is increasing by 20% every year attributing to 
the numerous satellites, airborne and terrestrial sensors collecting data every minute 
around the globe. Ever since mankind has started building the “digital earth” the 
society has started to feel secure as there is information on everything from weather 
early warnings to humanitarian assistance (Guo et al. 2020). Big data has enriched 
the understanding of how cities function, opening new paradigms of how social 
interaction and informed decision-making. One of the key advantages of big earth 
data is the power of location embedded. 

4.2 Big Earth Data and their Characteristics 

The big earth data is the digital inventory of the earth’s surface collected from different 
platforms such as satellites, aircrafts, UAVs (Unmanned Aerial Vehicles), and other 
sensors. It is primarily used for data-driven analysis and interpretation, simulation, 
and modeling, and to make informed decisions in wide applications. In literature, 
synonyms of this data exist such as “big EO data”, “big geospatial data”, “big environ-
mental data”, or “big remote sensing data”. Its main characteristics can be stated as 
massive, non-homogenous, multi-source, multi-dimensional, multi-temporal, multi-
scalar, highly complex, and nonstationary (Merritt et al. 2018). Similar, to other big 
data, the characteristics of the big earth data can be explained with the 5 “V”s: volume, 
variety, velocity, veracity, and value. At the time, this chapter is being prepared, there 
are more Vs that are used to characterize big data such as:
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Volume: It refers to the massive size of the data constantly collected by real-time 
sensors, location-based social media, and volunteered geographic information (VGI) 
sources. Satellites like the Landsat series have been collecting remotely sensed earth 
observation data for more than five decades archiving petabytes of data. One petabyte 
holds 1024 Terabytes (TB) or 1,125,899,906,842,624 bytes. 

Variety: It refers to the unique types of data in big earth data such as raster (grid-based 
data) and vector (points, lines, polygons) data, geotagged text data, and satellite data 
in different resolutions and formats. The variety has an impact on the ability of the 
system for structured data storage and manipulation. 

Velocity: It is the rate at which new data are being produced as well as the rate at 
which data should be processed. With frequent revisit of satellites at high resolution, 
continuous streaming of sensors like MODIS (Terra and Aqua), real-time GNSS, 
and geotagged social media, tremendous data are being generated at unimaginable 
speed. The requirement of storage and processing systems is increasing to match this 
speed of data generation. 

Veracity: It refers to the degree of reliability or the quality that the data has to offer. The 
data quality has been influenced by the data generation process of the sensor/detector 
and in-sensor processing resulting in noise or abnormalities in the data. Many of the 
other geospatial data such as human-generated vector data, in-situ sensor collected 
data, social media data, and geotagged text data often contain uncertainty. Veracity 
can have high impact from the visualization or the presentation technique which 
can completely distort the actual information which can be extracted from the data 
(Bresciani et al. 2018). 

Value: Although the fundamental characteristics of big earth data are the four already 
discussed above, it is realized that it is not only the size, variety, speed, or quality of 
the data, but also the value of the data. It relates to the concept that the data also must 
be worth to extract useful information as tremendous effort is put to collect, store, 
and process this data. 

This digitally stored information can be categorized as structured, semi-structured, 
and unstructured data. The structured data has a unique well-defined data model and 
structure which follows a consistent order. This data is easily accessible and usable 
as it is stored in well-defined columns and databases. Inherently, most of the big 
earth data collected by machines (satellites/sensors) or human-generated (attribute 
information) are structured data. Satellite or other sensor images are raster datasets 
consisting of pixels and each geo-registered using a coordinate system to the ground. 
The pixels in raster are quantized elements in spectral space in particular bandwidth 
sensitive to the sensor/detector. The vector (points/line/polygons) or point clouds 
(LiDAR) are also structured information mapped to defined locations and associated 
locational attributes. 

Semi-structured datasets inherit few properties of structured data but do not have 
formal structure of data models. In-situ data collected from fields using portable 
sensors such as spectrometers, air quality, or weather sensors can be considered as 
semi-structured data. These data have location information, however, to utilize them
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for further analysis, a few preprocessing steps will be necessary. Unstructured data 
neither have a predefined data model nor a structure. Common examples of this 
kind of data are emails, word documents, social media posts, pdf, PowerPoint, etc. 
This type of data, e.g., geology maps, data from scientific publications, and human-
generated information from social media needs extra effort to store, manipulate and 
extract required information for further analysis. 

4.3 Big Earth Data Sources 

Traditionally, the big earth datasets are categorized as land, ocean, atmosphere, 
hydrology, and socio-economic data collected by earth observation satellites, 
airborne and terrestrial sensors. However, there are newly added sources such as 
volunteered geographic information through social media, real-time location tracking 
through IoT, and in-situ observations of the urban environment. Here we broadly 
discuss four broad sources of big earth data. 

A. Earth Observation Sensors 
In the optical earth observation domain, the three major programs Landsat, 
Sentinel, and MODIS are the key contributors of big earth data. Due to the 
open data policy, data from these satellite systems are freely accessible for the 
entire globe. The joint USGS/NASA program provides the longest continuous 
space-based images of the earth. Till date, there are eight missions of Landsat, 
and data from7 missions (Landsat 6 failed) are available. Landsat 8 collected 
data for 7 years and 1.86 million images are added to the archive (Chatenoux 
et al. 2021). Every day, Landsat 8 is collecting approximately 700 new scenes. 
The Landsat 7 and 8 alone produced approximately 0.25 PB of data every year 
which covers the globe (Soille et al. 2018). A sharp increase in the big earth data 
is contributed by the Copernicus Sentinel satellites developed by the European 
Space Agency (ESA). Out of the six missions till date, three are responsible 
for monitoring land and ocean. Currently, there are two operational Sentinel-2 
satellites under the present acquisition plan, which generate more than 1.7 TB 
of data for the 1C processing level every day (Sudmanns et al. 2018). With all 
Sentinel missions at full operational capacity, the data volumes are expected to 
exceed approximately 10 TB per day. Recently, with popularity of drone-based 
data collection, this is becoming an important source of big earth observation 
data (Athanasis et al. 2019). 

B. Data from Model Simulations and Projections 
With the advancement of computational models, the data derived by simulations 
and projections are increasing in both spatial and temporal resolutions. One 
key example is the Intergovernmental Panel on Climate Change (IPCC), which 
provides data generated from Integrated Assessment Models (IAMs), General 
Circulation Models, Carbon-cycle Models, and Earth System Models. The IPCC 
Fifth Assessment Report (AR5) generated 10 PB of simulated climatic data,
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and it is estimated in the IPCC report that in the next years it is projected to 
generate even hundreds of petabytes (Schnase et al. 2017). One more example is 
the EU-funded Copernicus Climate Change Service (C3S) by ECMWF which 
produces petabytes of climatic data which is freely available. ERA5 is the most 
widely used C3S data which integrates huge volumes of historical observations 
into global estimates utilizing advanced modeling and data assimilation system. 
The ERA5 weather and climatic data are available globally from 1979, which 
provides over 200 variables at a spatial resolution of 31 km at every hour. The 
hourly ERA5 reanalysis data alone for just nine variables have a volume of about 
7 TB (Wagemann 2020). 

C. Internet of Things (IoT) 
A new addition to the source of big data enhancing the space-based and near-
earth sensors is the vast network of ground-based sensors (IoT), which collects 
boatload information. It is a network infrastructure of “objects” (things) that are 
embedded with sensors, software, and other technologies and which first collect 
and then transmit data to central servers (Hsu et al. 2020). In 2021, the volume 
of data produced by IoT applications is estimated as 847 ZB (1 ZB = 1021 bytes) 
(Cisco 2020). Unlike, Earth observation and model simulation data which are 
generally structured geospatial data, IoT seamlessly produces semi-structured 
or unstructured big earth data globally, which tends to be more heterogeneous, 
dynamic, and noisy (Li 2020). 

D. Volunteered Geographic Information (VGI) 
VGI refers to the collection and dissemination of big earth data collection which 
is recorded by “volunteers” through crowd-sourcing methods. One of the most 
successful VGI is the Open Street Map (OSM) platform where billions of contrib-
utors have created location-based data with an intention of creating a free base 
map for the entire world. Eventually, this is not just a base map but provides 
ample information not only on location but also on semantics. Another type 
of VGI data is created unintentionally, by people sensors through geotagging 
in social media platforms such as Twitter, Facebook, and Instagram. However, 
VGI data can be often redundant, noisy, and uncertain. 

4.4 Existing Platforms for Big Earth Data Processing 
and Management 

Big earth datasets are not only large, but this also brings complexity, therefore, 
conventional software, systems, and platforms are unable to handle them. This section 
includes some of the systems which are currently in use for working with big earth 
data from sources discussed above. It should be noted that there is no “one tool” 
which can handle all kinds of big earth data and all types of real-world complex 
problems (Gomes et al. 2020). In many cases, there might be combination of tools, 
techniques, and technologies.
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A. Google Earth Engine (GEE) 
GEE is one of the best and most widely used tools for big earth observation 
data processing and analysis. This uses a parallel processing system to carry 
out computation across many machines. Currently, it includes the entire EROS 
(NASA/USGS) Landsat scenes, selected MODIS data, Sentinel-1 datasets, 
precipitation data, NAIP data, sea surface temperature data, CHIRPS climate 
data, and elevation data (developers.google.com/earth-engine/datasets/catalog). 
It also has a provision for uploading user data viz., user-collected UAV and 
citizen sensor data for analysis. Along with petabytes of data, it also includes 
information and metadata of each type of data. 

Earth Engine service can be connected through one of the available APIs. 
Currently, client libraries for JavaScript and Python are available to convert 
complex geospatial analyses to earth engine requests (Table 4.1). The default 
JavaScript code editor in GEE is an interactive environment for developing 
geospatial applications. The beginners are recommended to use the default panel 
where more than 800 functions are available for handling big earth observation 
data. The open-source Python library running in Google Colab can also be used 
which has a similar structure to the code editor. Colab or “Collaboratory” is 
an executable document where codes can be written, run, and share. Both the 
Python and JavaScript APIs access the same server-side functionality, but client-
side expressions can vary because of language syntax differences. Apart from 
these, newly added is the REST API which can take authenticated HTTP requests 
and contains new and advanced features. Queries can be also issued to the earth 
engine REST API from Python using Google Colab. 

Table 4.1 Comparison 
between Javascript code 
editor and Python API 

Earth engine Javascript code 
editor 

Earth engine Python API 

• Rich documentation and 
tutorials available 

• Getting started is easier 
• Built-in interactive mapping 
functionality 

• Built-in authentication 
available 

• Several apps are already 
developed 

• Additional package cannot 
be installed 

• Limited documentation and 
tutorials available 

• Language syntax are easier 
• Easy to share codes between 
scripts 

• Batch processing is easier 
(exporting images) 

• Executing code block by 
block 

• Numerous python packages 
can be linked 

• More plotting and 
visualization tools are 
available 

• Integration with open-source 
GIS is possible 

• Deep learning is possible
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B. Google BigQuery GIS 
BigQuery is a petabyte-scale analytics data warehouse by Google, which accepts 
SQL queries on large real-time and achieves datasets. This can be coupled with 
data visualization tools to interpret and analyze the data interactively such as 
trend analysis and predictions. A public dataset is also stored in BigQuery which 
is available for public use through the Google Cloud Public Dataset Program 
(cloud.google.com/solutions/datasets). Currently, this cloud includes real-time 
global air quality (openaq) data; over 4 million scenes from Landsat 4, 5, 7, and 8; 
comprehensive land, ocean, and atmospheric observation data; several datasets 
from NOAA including historical climatic data, operational environmental satel-
lite data, significant earthquakes databases. This allows limited (storage of up to 
10 GB of data and query up to 1 TB of data each month) access to users above 
which top-up can be done based on the needs. 

This also has a spatial extension called BigQuery GIS. In this platform, it is 
possible to visualize and analyze geospatial data by utilizing geography data type 
and standard SQL geography functions (cloud.google.com/bigquery/docs/gis-
intro). This system is proven successful in handling large vector datasets. 
Currently, there are limitations of this system, for example, the geography func-
tions can be used in the standard SQL, and geography data type is supported 
only in the BigQuery client library for Python. Nevertheless, improvements are 
being made to this platform to minimize the limitations in the near future. 

C. BIG Data for GeoAnalytics (ESRI ArcGIS) 
The ESRI GeoAnalytics is available through ArcGIS GeoAnalytics Server 
(ArcGIS Enterprise Version 10.5 and more) and ArcGIS Pro (Version 2.4) 
to speed up batch spatial analysis and data management workflows. With 
GeoAnalytics Server, distributed analysis can be performed across multiple 
machines, while GeoAnalytics Desktop Tools use ArcGIS Pro to perform 
parallel analysis with local data from user machines. The GeoAnalytics 
Server uses distributed analytics against distributed data, with several frame-
works/technologies for distributing computation. The GeoAnalytics integrated 
in ArcGIS Server combines technologies such as Hadoop, MapReduce, and 
Spark (processes distributed data in memory) on a cluster to solve analytical 
problems. Big earth data can be analyzed in less time by using the power of 
multiple machines. 

The GeoAnalytics can connect to different data sources as input data, 
however, currently it works with mainly vector and tabular data. This data 
can come from IoT such as the collection of movement data (vehicles, people, 
storms), and VGI such as crowdsourced and social media. In addition, this also 
allows to use own big earth data which are in shapefiles, parquet, ORC, and 
delimited files (such as *.csv, *.tsv and *.txt). The outputs from the analysis can 
be stored in the ArcGIS Data Store. Figure 4.1 shows how data flows through 
GeoAnalytics Server with inputs and outputs at ArcGIS Enterprise 10.8. External 
storages such as Azure blob storage and data lake, Amazon S3, HDFS (Hadoop 
Distributed File System), Amazon S3 bucket as well as local or network file 
shares are available for both inputs and outputs.
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Fig. 4.1 ArcGIS Enterprise 10.8 data flows through GeoAnalytics Server (Curtis and Ambrose 
2019) 

D. Open Data Cube (ODC) 
Another platform that allows handling, processing, and analysis of big earth 
observation data is Open Data Cube (ODC) (opendatacube.org). This platform 
is open source and is developed on GitHub. The available satellite data for 
analysis include Landsat, Sentinel, and MODIS. Based on the application, the 
ODC can be deployed on HPC, Cloud, and on local installations. Till date, the 
ODC can be used to catalog massive amounts of earth observation data, run 
python-based API for high-performance query and data access, exploratory data 
analysis, and already stored data processing. Currently, there is no data sharing 
between researchers is available on this platform (Gomes et al. 2020). 

E. Open-Source Libraries and Binaries 
A larger group of geospatial scientists using big data for various applications 
prefer to use open-source libraries and binaries. The advantage of this is that 
customized processes can be set up and run them programmatically inside a 
shell script. Regular users of big earth data generally handle them in a Linux 
environment rather than Windows. Python GDAL bindings are commonly used 
which supper both distutils and setup tools (gdal.org/api/python.html). For very 
large datasets, it is possible to process them into smaller batches to improve 
efficiency and reduce computation time. 

F. Other 
Other tools and technologies which are being used for different varieties of 
big earth data include SpatialHadoop (spatialhadoop.cs.umn.edu), AWS Athena 
(aws.amazon.com/athena), PostGIS (postgis.net), etc. SpatialHadoop is an open-
source MapReduce extension specifically designed to handle large spatial 
datasets on Apache Hadoop. Athena is an interactive query service from Amazon 
which is serverless and facilitates analysis capabilities directly on the Amazon 
Simple Storage Service (Amazon S3) using standard SQL. PostGIS is a spatial 
database extender for PostgreSQL object-relational database. It allows location 
queries to be run in SQL by supporting geographic objects.
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4.5 Big Earth Data Analytics 

Most of the big earth data systems and platforms have been shifted to cloud computing 
platforms for rapid processing, analysis, visualizing, and sharing. Big earth data 
analytics include the process of preparation, reduction, analysis, mining, and visu-
alization of big spatial-spectral-temporal datasets (Kempler and Mathews 2017) to  
uncover information such as trends, patterns, correlations, and predictions. Here, 
these processes we will discuss as (1) data preprocessing and (2) data analytical 
methods suitable for urban big earth data. 

A. Big Earth Data Preprocessing 
Preprocessing is necessary for any data, for big earth data due to the massive 
volume and rapid streaming this step is important to clean outliers, impossible 
data combinations and fill/ignore missing values. A consistent, complete, accu-
rate, and smooth data should be used for further analysis or modeling, other-
wise, it can be “garbage in” and “garbage out”. Almost 50–80% of the time 
is consumed during this preprocessing phase in most of the big data analytical 
processes (Kempler and Mathews 2017). Yang et al. (2019) summarized five 
different forms of preprocessing for big earth data: extraction, transformation, 
evaluation, reduction, and augmentation. 

Extraction: This form of preprocessing primarily involves data cleaning (missing 
or noisy data), outlier removal, and/or anomaly detection. Missing data is often 
filled by manually or estimating through mean or most probable values from the 
surrounding. Many times, it is ignored, to retain the original information in the 
dataset. Point clouds such as from LiDAR or vehicle collected data often contain 
noise or outliers due to environmental conditions as well as human interventions. 
This is often removed by several methods such as binning method, regression, 
and clustering. Efforts are still going on developing different noise removal 
methods to improve data quality (Li 2020). 

Transformation and evaluation: Data transformation is necessary to standardize 
the data. It involves data normalization to rescale values in a specified range, 
format conversion, coordinate transformation to standardize projection infor-
mation, discretization to replace raw values of the numeric attribute by interval 
or conceptual levels, and standardize data structure. The quality evaluation is 
a necessary step to choose the best quality of the data either by corrections 
(e.g., bias correction) or changing the data source (for example, evaluating by 
sensitivity analysis) (Yang et al. 2019). Evaluating spatial relationships is also 
required in many applications. MapReduce and Spark-based frameworks and 
systems, such as GeoSpark and SpatialHadoop, were designed to maximize 
speed in these computations. 

Reduction: The data reduction is aimed at increasing storage efficiency and 
reducing data storage and analysis costs. It improves the storage, indexing, 
analysis, and visualization processes. The reduction can be done in different
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ways, such as aggregation, redundancy elimination, attribute subset selection, 
and dimensionality reduction. Based on the purpose the type of reduction method 
varies. For example, data aggregation is a process where data is gathered and 
expressed in a statistical summary form. Again, despite the availability of 
numerous features, many researchers choose to reduce dimensions for further 
analysis. Generally, expert knowledge is combined although several algorithms 
exist that can perform automatically (Stromann et al. 2020). 

Augmentation: In several instances, when there is not enough data within a big 
earth dataset to train a model, duplicate copies of each sample within the data 
is created. This is called data augmentation process. Yan et al. (2019) is their 
work has proposed a data augmentation strategy based on simulated samples to 
detect ships from earth observation images using deep learning methods. 

B. Big Earth Data Analytics 
Many researchers around the world to gather huge amounts of earth data to 
gather a big from the data. On the other hand, due to huge data volume, the chal-
lenges are also complex to uncover the correlations, hidden patterns, and other 
information. To overcome this problem, advanced recent technologies have been 
made to extract information efficiently and within less time. Broadly, big earth 
data analytics can be divided into simulation-prediction, traditional statistical 
methods, machine learning methods, and deep learning methods. 

Simulation-Prediction 

Numerical models are being utilized in simulation and prediction in various 
disciplines of earth sciences including land surface, solid earth, atmosphere, 
biosphere, and the oceans within a given period (Yang et al. 2019). A numerical 
simulation refers to the calculation where a mathematical model is implemented 
for a physical system. As big earth data gains visibility, so as the capability 
of numerical models to simulate and predict physical processes by combining 
observations with the numerical models. Traditionally, numerical models were 
most popular in atmospheric science and environmental modeling based on earth 
observation data (Binkowski and Roselle 2003; Courtier et al. 1994; Pulvirenti 
et al. 2020). Recently, IoT big earth data-based numerical models are also used 
for predictions in transportation and traffic congestion-related studies (Bernhardt 
2017). Examples of numerical models used in big earth data analytics are agent-
based modeling, cellular automata, etc. 

Traditional Statistics 

Traditional statistical tools are generally based on assumptions and are used 
to reveal the relationships, frequency distribution, and predictions of variables. 
To apply statistics on big earth data, three things need to be considered: the 
sampling method of the data (random/stratified), i.e., how the data was collected; 
data distribution, i.e., if the data is normally distributed or follows a non-normal 
distribution (Poisson, logistic, gamma); and the statistical estimator, based on 
the statistical method. Descriptive statistics such as mean, median, and skewness
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are often used to understand the variables on earth. The most used inferential 
statistics methods are the regression models. These models help to understand 
relationships between variables in the earth system, such as traffic congestion and 
air quality. Classification (decision tree) and clustering (WaveCluster, DBSCAN) 
methods are used to group similar areas and differentiate variables behaving 
differently. 

Machine Learning 

It is a technique of data analytics that automates analytical model building. It 
also provides a set of tools to make systems learn from the data, identify patterns, 
and make decisions with minimal human intervention. For the successful appli-
cation of machine learning, two aspects are important: (i) machine learning 
algorithm and (ii) training set. Once the training is completed, it is also impor-
tant to validate with an independent set that was not used in the training. The 
performance of machine learning largely depends on the quality of the training 
set. The training can be done in a supervised or unsupervised manner. Supervised 
learning involves using labeled datasets that have inputs and expected outputs. 
The primary application of supervised learning is classification. Unsupervised 
learning used datasets with no specific structure, and the main application area 
is pattern analysis. With machine learning, typically three tasks are performed: 
Multivariate nonlinear non-parametric regression, unsupervised classification, 
and supervised classification (Lary et al. 2018). The data for these tasks can be 
from all types of sources described above. Common algorithms used to accom-
plish these tasks include neural networks, support vector machines, Random 
Forests, CART, and decision trees. 

Deep Learning 

It is a subset of machine learning that utilizes numerous layers of nonlinear 
processing units for data transformations, representations, and extract patterns 
by using neural networks (Bahi and Batouche 2018). Like machine learning, 
this also has a similar process of training, processing, and validation. Deep 
learning architectures are implemented through neural networks. The foundation 
of a neural network is the single neuron or the Perceptron, like a biological 
neuron. By densely connecting all the inputs of several perceptions, deep neural 
networks are built. These deep networks consist of multiple hidden layers, and the 
output of one hidden layer will be input to the next hidden layer. Some common 
deep learning algorithms include Convolutional Neural Networks (CNNs), Fully 
Convolutional Networks (FCNs), Encoder-Decoder Based Models, and Regional 
Convolutional Network (R-CNN) Based Models (Du et al. 2020). Some common 
platforms which facilitate deep learning are Tensor Flow, PyTorch, and Keras.
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4.6 Big Earth Data and Urban Studies 

A. Urbanization, Growth monitoring, Simulation 
Urban areas attract a major portion of the population due to the abundance of 
opportunities, better facilities, quality of life. As a result, more than half of the 
world’s population lives in urban areas. This is therefore of utmost importance to 
keep a track of the growth of urban areas to understand the urbanization process. 
The growth of two urban areas cannot be exactly same. Nevertheless, earth 
observation data is serving what it is best used for: monitoring changes. Several 
earth observation data are in use, one of the most popular is the Landsat data 
which is providing global satellite data at 30 m resolutions from 1972 till date 
through their different missions. Land use land cover information is extracted 
from these datasets to monitor short-term as well as long-term changes in urban 
areas. Li (2020) have used big earth observation data such as Global Human 
Settlement Layer (GHSL), global population grid products (Worldpop), and the 
global night-time light images (DMSP/OLS) to monitor urbanization in world 
heritage sites in China. They proposed an Urbanization Intensity Index (UII) to 
dynamically monitor and quantitatively assess the urbanization intensity around 
the world heritage sites. Identifying UHI (Urban Heat Island) and analyzing land 
surface temperature changes is another recently popular area. Global Surface 
UHI Explorer is an earth engine app that can display areas of UHI globally from 
2003 to 2018. 

Land use change prediction involves simulation of past changes, considering 
drivers of change to the desired future. The use of land use prediction in urban 
planning can help in making better decisions and policies. This coupled with 
scenarios (exploratory or normative) can give an idea of the success rate of 
already developed plans. Traditionally, a limited number of data was being used 
for simulation and prediction using methods like cellular automata (CA), Markov 
chain, regression models, agent-based models, etc. However, efforts have been 
made to use more data to improve the efficiency and accuracy of the models. In the 
last few years, several studies have attempted to design parallel CA algorithms on 
Central Processing Unit (CPU) parallel computing, Graphics Processing Unit 
(GPU) parallel, Message Passing Interface (MPI), GPU/CPU hybrid parallel, 
and MapReduce Framework to simulate urban growth (Kang et al. 2019). These 
methods can address the segmentation and integrity of land change simulations 
and predictions. 

In addition to the use of huge earth observation data, VGI and IoT-based 
data are also being used for smarter urban planning. With the increasing trend 
of participatory urban planning and with an aim to reduce the gap between the 
local inhabitants and the goal of the government, crowdsourced maps, and mobile 
phone applications are being developed and used in this field. IoT-based traffic 
data can help decide the need of over bridges, diversion routes, and highways in 
areas with more traffic congestion (Thakuriah et al. 2017) also, mention about 
three more data types that are often combined with big earth data: private sector 
data, administrative data, and arts and humanities data.
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B. Urban Development and City Intelligence 
With the unprecedented growth of urban big data, it has become the center and 
core element in urban development and city intelligence. Pan et al. (2016) has 
enumerated three categories where big data can highly contribute to urban devel-
opment: allowing web-based sharing, collaborative utilization, and integration 
of production factors; facilitating innovative ways of circulation and business 
modes for production materials, human resources, technologies, and funds; and 
enhancing core value and strengths of enterprises. Further, this also supports new 
business paradigms as well as innovative ways of administrative governance. An 
example is Zomato, which is a search, discovery, and delivery platform primarily 
connects restaurants and local inhabitants in India which came into service in 
2008. It is constantly gathering data that is being used to provide services more 
efficiently and identify hotspot areas that need more outlet points. 

In recent times, there is a race in making cities “smart” and “intelligent”. 
“Data” is the foundation of making a city smart. The integration of IoT with 
artificial intelligence has made it possible to make cities smarter by providing 
smart governance, smart living, smart mobility, smart economy, smart environ-
ment, and of course smart people where the quality of life is at the highest 
level. 

C. Air Quality 
Urban air quality refers to how “clean” is the ambient air inside an area that is 
considered as urban. Generally, urban areas have more concentrated sources of 
pollution, but the pollutant dispersion is limited by the physical barriers than 
rural areas. Air pollution is considered as the greatest environmental hazard to 
human health and is responsible for approximately seven million deaths each 
year (World Health Organization 2021). Therefore, over the years several efforts 
have been made to develop early warnings for air pollution to reduce or control 
this momentous hazard. Big earth data has been used in three areas: air quality 
monitoring, forecasting, and traceability (Huang et al. 2021). Data from different 
sources are generally fused in air quality analysis methods such as weather 
stations, sensors mounted in vehicles (IoT), and satellite-based earth data. 

Air quality monitoring is the foundation of air quality forecasting and trace-
ability, monitoring can be done in spatial, temporal, and/or spatio-temporal 
manner. Along with data from monitoring stations, one of the most useful data in 
this analysis is the earth observation data. One of the recently popular earth obser-
vation data for air quality analysis is from the Copernicus Sentinel-5 Precursor 
mission which is the first Copernicus mission dedicated to monitoring the atmo-
sphere. This mission is already contributing to the big earth observation data 
for ozone, methane, formaldehyde, aerosol, carbon monoxide, nitrogen oxide, 
and sulfur dioxide, as well as cloud characteristics. Based on this data, moni-
toring tropospheric NO2 column spatial configuration in a specific period over 
the whole of Europe was accessed (Vîrghileanu et al. 2020).
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Monitoring station data, which is also considered as the “geotagged” time 
series data has been long used in air quality monitoring, forecasting, as well as 
traceability. However, this data needs more effort in preprocessing, for cleaning 
outliers and approximating the missing values in absence of a dense network 
of a monitoring network. For this purpose, several methods can be used: statis-
tics such as mean or median, or interpolation, Expectation Maximization (EM), 
matrix factorization; machine learning algorithms such as decision trees, Artifi-
cial Neural Network (ANN). Air quality forecasting traditionally is being carried 
out by statistical methods such as regression models and principal component 
analysis. These methods use large historical data to analyze the potential rules 
to forecast air quality to the future based on statistics (Dun et al. 2020). In the 
last decade, machine learning and deep learning methods are used which are 
based on neural networks to model and forecast big air quality data (Du et al. 
2019; Zhao and Zettsu 2019). Furthermore, combining both statistics and deep 
learning methods for improving the accuracy of forecasting models. 

D. Transportation services 
IoT-based big earth data has gained tremendous popularity in recent years. 
On streets especially, vehicle probes collect massive trajectory data which are 
widely being used in evaluating traffic congestion, trip time, and traffic speed 
in urban areas. Several studies have used machine learning methods and deep 
learning models for Network Traffic Monitoring and Analysis (NTMA) appli-
cations such as traffic classification and prediction (Abbasi et al. 2021). Often, 
other connected device data such as smartphones are used in addition to the 
IoT data for these studies. NTMA techniques are mainly two types: (i) active 
and (ii) passive. Active techniques involve transferring a progenerated traffic 
probe data into a network. The “ideal” test traffic data is then compared with the 
real traffic to measure different network performances through metrices (e.g., 
network throughput, latency, packet loss ratio, and jitter). Active methods are 
mainly used for controlling Service Level Agreement (SLA) based services. 
Whereas, passive methods are primarily used for traffic monitoring, managing, 
and transportation planning. These uses past and real-time data to make analysis 
and make decisions. 

In big cities, taxi and cab services play a major role in city transportation. 
If traffic congestion is too high, it impacts adversely to the productivity of the 
transportation services, resulting in the rejection of transport drivers to provide 
services to some destinations (Phiboonbanakit and Horanont 2021). Several 
studies have used this big data in different aspects such as spatial and temporal 
understanding of traffic congestion, taxi/cab demand prediction, algorithm, and 
application development for better management of transportation services. The 
probe systems are designed to improve the profitability of taxi companies so 
that the data collected in the past can help to forecast the demand in the future 
statistically or using machine learning. Liu et al. (2020) presented two ways for 
the prediction of online taxi-hailing demand based on backpropagation neural 
network and extreme gradient boosting. In Singapore, one of the most widely 
systems used by the land transport authority of Singapore is the TrafficScan
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system which is an advanced transport system providing motorists real-time 
speed information on major roads in Singapore. They have maximized the use 
of technology and have innovatively used a taxi dispatch system to gather traffic 
data on the roads. This data is processed real-time to give traffic speed conditions 
on the streets, and these can be accessed online by drivers to plan their routes 
for a smoother journey. 

E. Tourism 
Urban tourism is an effective, global form of tourism, however, over the years less 
focus is given when it comes to linking urban studies to tourism. Therefore, there 
is no well-defined definition of urban definition despite its importance (Ashworth 
and Page 2011). Tourists visit cities in several reasons, making intensive use of 
many city services and facilities. But most cities are not planned or built for 
tourism: though cities need tourists. The cities that host the most tourists are large, 
multifunctional entities into which tourists can effortlessly fit, making them 
largely economically and physically invisible. Agapiou (2017) presented two 
different case studies utilizing earth observation big data in fields of archaeology 
and cultural heritage in urban areas. He used GEE platform to retrieve Landsat 
and DMSP-OLS Night-time Lights Time data to present the use of big earth data 
in supporting archaeological research and cultural heritage. 

VGI can be beneficial in analyzing travel demand, tourism phenomenon, and 
tourist behavior, in an urban context (Ferreira 2019). Crowdsourced data and 
geotagged photosin social media such as Facebook, Twitter, and Instagram can 
help to identify the spatial distribution and places of concentration, in dense 
and complex areas. Encalada et al. (2019) used “Panoramio” (in 2007 Google 
acquired Panoramio and closed it down, in late 2016) and “Flickr” data to map 
tourists and their spatial distribution in Lisbon metropolitan area. Much effort 
was given to data preprocessing the unstructured data followed by spatial analysis 
such as global and local Moran’s I, Global Getis-Ord Index, and hotspot analysis 
to understand the geographical patterns of the online footprints. 

F. Emergency Management 
In an emergency event, for example in case of a natural disaster, it is of utmost 
importance to send information to local people about safe places, resources 
such as hospitals, food sources, and road situations. For this purpose, an efficient 
communication network is essential which can gather and disperse such informa-
tion. Nevertheless, several elements of the network such as links and nodes can 
get destroyed or malfunction during a disaster. Hence, a communication network 
that can withstand tremendous impact from disasters is critical to any emergency 
management system. Four critical technologies to improve communication 
networks resilience are demand-driven network resource management, surviv-
able network provisioning, ad hoc networks, and delay/interruption tolerant 
networks (Song et al. 2020).
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4.7 Big Data Urban Analytics Toward Society 5.0 

Society 5.0 was initially coined in the 5th Science and Technology Basic Plan as a 
future aspired society of Japan. It follows Society 1.0 (hunting society), Society 2.0 
(agricultural society), Society 3.0 (industrial society), and Society 4.0 (information 
society). Society 5.0 refers to “A human-centered society that balances economic 
advancement with the resolution of social problems by a system that highly integrates 
cyberspace and physical space”. It is expected that in Society 5.0, people will achieve 
an active, enjoyable life. In this new 5.0, IoT will connect all people and things, all 
information and knowledge will be share and new value-added information will be 
derived; artificial intelligence will free humans from cumbersome work by analyzing 
huge data; the possibilities open to humans will expand through the use of robots, 
automatic car; social issues will be resolved, and humans will be free from various 
constraints (Deguchi et al. 2020). Although initially started in Japan, it has already 
reached into discussion forums of various countries. 

The current digital transformation processes are driven by big data including the 
big earth data and data analytics which makes most of these data turning them into 
actionable insights (Fig. 4.2). Data Analytics is the exploration and analysis of the 
data sources, what the data represents, and transforming the data into information 
for intelligence creation. Digital transformation definitely is a means but should be 
utilized to build a society that focuses on human well-being, vitality, and high-level 
living. In the Society 5.0 concept, people, objects, and systems are all connected in 
cyberspace and optimal results obtained by AI exceeding the capabilities of humans 
are fed back to physical space. There is a need for a huge amount of big data, 
including the “Big Earth Data” collected by intelligent systems which converge 
between cyberspace and physical space. Using these insights to proactively improve 
efficiency is the first major step in transforming conventional communities into truly 
super-smart communities. 

Fig. 4.2 Digital transformation—big earth data and Society 5.0 context, universe of discourse, 
paradigms, and enabling processes
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4.8 Challenges and Way Forward 

Urban areas are complex and urban planners often need to have a more comprehensive 
and up-to-date understanding of different aspects of the area. Big earth data despite 
having different challenges is increasingly used in urban studies. The big earth data 
from earth observation and simulations are mostly structured however can be of 
various formats. On the contrary, big earth data from IoT and VGI sources are semi-
structured or unstructured. As the IoT and VGI-based data collection is increasing, a 
huge volume of data is generated every day. The success of machine learning and deep 
learning methods largely depends on the quality and quantity of the data. Machine 
learning methods work best with structured data, whereas deep learning methods are 
more efficient with unstructured and semi-structured datasets. IoT data such as traffic 
data is unstructured and unlabeled/semi-labeled. To use machine learning methods 
for these studies, it is a huge task in terms of money, time, and human effort to label 
them. Therefore, solutions should be found to integrate machine learning algorithms 
with deep learning, or unstructured machine learning methods for efficient modeling 
and analysis. 

Although the cloud-based data processing platforms (distributed and parallel 
computing) are gaining popularity, there are new challenges coming up. For example, 
if the data is stored in different clouds, the data must still move for use or share if 
there is no standardized platform. Further, if there are issues such as power outage 
or poor internet connection, as well as security and privacy concerns, there will be 
disruption in the processing. It is also observed that even in distributed computing use 
of very high temporal data analysis might cost more in terms of time. This implies 
that the systems handling these big data must be upgraded in terms of both hardware 
and software to handle massive unstructured datasets, standardization of big earth 
data structure, and to avoid any adverse conditions. 

Big earth data analytics can be hindered by lack of good programming skills, secu-
rity constraints, or vendor lock-in. Cloud computing has been facilitated in several 
platforms, however, mainly focusing on earth observation, and simulated big earth 
data. There is a need of user-friendly platforms which can handle unstructured and 
semi-structured earth data from IoT and VGI. Further, the implementation of 3-D 
visualization services needs attention which can largely help to understand the rela-
tion between 2-D data with the topography. This can largely help too, for example, 
monitor urban growth not only horizontally, but also in a vertical manner.
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Precipitation Indexes in Central America 
Dry Corridor 

Karel Aldrin Sánchez Hernández and Gerald Augusto Corzo Perez 

Abstract Understanding the dynamics of the earth’s surface variation patterns has 
been critical for climate change adaptation and mitigation. During the last decades, 
detecting these events through remote sensing allowed us to improve the conven-
tional analysis toward an integrated space–time analysis. This chapter proposes a 
spatiotemporal exploratory analysis of the information from SPI, SPEI and links 
its results into remote sensing information of NDVI using computer vision algo-
rithms for pattern recognition and tracking. This analysis was carried out in three 
phases. First, a 20-year analysis of vegetation-based indices (NDVI) and meteorolog-
ical drought indices (SPI, SPEI), to identify and compare the water anomalies over 
Central America dry corridor, using ERA5 climatological information and satellite 
images for the period 2000–2020. These results are used to assess the spatiotemporal 
variations of meteorological stress and vegetation water stress. All this is analyzed 
considering the conditions along the phenological cycle. The implementation of the 
spatiotemporal drought methodology proposed by Corzo and Vitali, 2018, and its 
results used as input time series, through LOWESS smoothing proposed by Jong 
(Remote Sens Environ 115(2):692–702, 2011). The final comparison uses statistical 
metrics such as spatial correlation. Drought units are identified for each meteoro-
logical drought index and are compared among them, and together with the NDVI 
normalization, a vegetation-based drought index (vegetation condition index or VCI) 
is estimated. This step allows representing the phenological conditions of vegetative 
water stress without interferences of temporality and consistency. Finally, the VCI 
is classified in categorical ranges that allow the comparison of drought units to the 
SPI in different lags (1, 3, 6) and SPEI (1, 3, 6). By this, establishing meteorological 
relationships with the vegetative surface dynamics and generating the trajectories
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(tracking) of each drought cluster observed with the VCI. Finally, a validation of 
the trajectories are also compared. All validation show that his methodology allows 
using directly inferred drought from remote sensing as a meteorological drought 
index, in similar way as SPI. The spatiotemporal changes monitoring and evaluation 
associated with land cover and water sources, and derivation of drought index based 
on vegetative condition is an essential component of this chapter’s contribution. 

Keywords Spatiotemporal tracking · NDVI · SPI · Drought propagation · Remote 
sensing · Computer vision · Climate change 

5.1 Introduction 

Regarding the WMO (Wilhite 2006), droughts relate to water deficiency in a partic-
ular region, and their severity has potential repercussions in diverse contexts (Serda 
2013). Recent studies indicate that droughts’ frequency and severity appear to be 
increasing in some zones due to climate variability and change (Podestá et al. 2016). 
Also, its occurrence is cyclical and is related to the El Niño Southern Oscillation 
ENSO (van der Zee Arias et al. 2012), which influences both the irregularity of the 
precipitation cycle and the spatiotemporal magnitude of impact at scales. Regional 
and local, limiting the natural resilience capacity of the territory. 

Relate to Diaz et al. 2020a, spatiotemporal methodologies applied to droughts 
have been developed. These have managed to generate a better understanding of 
spatiotemporal dynamics, strengthening their monitoring and impact reduction (Cai 
2014). Several approaches have been proposed to describe the spatiotemporal devel-
opment of drought. According to Bacanli et al. 2009; and Dracup et al. 1980, propose 
methodologies that apply to force a significant number of meteorological variables 
in the drought indexes calculation based on time series disaggregation of relating it 
to the spatiality of all zone, establishing a unique phenomenon in the zone. 

Among the tools developed in recent decades, remote sensing has shown great 
promise for improving the calculation and monitoring of drought events. For this, 
vegetation indices and data on drought, humidity, and surface temperature derived 
from satellite images are used by Sahaar and Niemann (2020); Ghulam et al. 2007). 
Following (Tadesse et al. 2012), reported significant correlations between the normal-
ized difference vegetation index (NDVI), obtained from MODIS images, calculated 
every 16 days, and drought. Tadesse et al. (2005) showed that when using NDVI, 
despite being an effective indicator of humidity and vegetation conditions, there is a 
lag between the occurrence of the drought event and the change in its values, which 
indicates that this index is not appropriate to monitor the drought conditions of crops, 
in real-time conditions (Nihoul 2005)
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5.2 Case Study 

Central America is one of the world’s regions most exposed to the risks of 
natural hazards and climate variability making climate hazards the most prevalent, 
represented mainly by frequent droughts and severe spontaneous floods, affecting 
agricultural production, with greater intensity in degraded areas (Eckstein et al. 2017). 

Belize, Guatemala, Honduras, Panama, El Salvador, constitutes the dry forest 
ecosystem corridor of Central America (Fig. 5.1). Caused by the geographic location, 
Central America have more probability to receive strong heat waves, also, influence 
of global climatic phenomena and hurricane seasons prevent a progressive recovery 
of its hydric condition in terms of food and environmental security (van der Zee Arias 
et al. 2012). 

The hydrometeorological records shows that Central America had experienced an 
average temperature change, closing of 0.05 °C yearly, it means 0.5–1 °C of historical 
anomalies by temperature (Fig. 5.2) in last 40 years. Otherwise, rainfall rates have 
tended to decrease in 12 mm/year during the same period (Fig. 5.3).

Fig. 5.1 Study area, Central America Dry Corridor 
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Fig. 5.2 Surface temperature anomalies and total precipitation by 1950–2020 

Fig. 5.3 Surface temperature anomalies and total precipitation by 1950–2020 

According to the Intergovernmental Panel on Climate Change (IPCC), Central 
America is categorized as the Latin America region, with most likely to be influenced 
by climate change impacts and effects (Frieler et al. 2017; Anandhi et al. 2008). Which 
is supported by increased flooding and prolonged droughts among other adverse 
natural hazards (hurricanes, earthquakes). 

Water supply is linked to intra-annual precipitation fluctuations as well as 
geographical variability. During El Niño events, annual rainfall can decrease between 
38 and 42%, with extended warm periods and more extended dry spells. 

High temperature seasons and the dry climate conditions have catastrophic conse-
quences on agricultural development yield and affecting food security (Bae et al. 
1981; FAO  2019). Added to the tropical storm season has damaging effects in terms 
of critical water levels, pollutions preventing the water system near resilience (FAO 
2019).
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Land-cover migration over 2000 to 2020 

Fig. 5.4 Land-cover migration and trends over 2000 to 2020 

The hazards generated by flooding or droughts mainly, have increased in recent 
years. Growing food insecurity and water supply availability, increasing climatic 
trends, and socioeconomic stresses in the region have caused the displacement 
of people from their homes and communities in 1.6 millions in the last decade 
(Buttafuoco and Caloiero 2014). 

As an example, Fig. 5.4 and 5.5 allows to understand the ecological, socio-
ecological, economic, and cultural impacts of land use change on Central America, 
trends in land use and subsoil use change have been identified, allowing us to estab-
lish few grid cells changes mainly in forest and wetlands to woody savannas about 
20% reduction of forest structures to pasture (Anderson et al. 2019; Maldonado et al. 
2016). Reinforced by agricultural expansion in the region around 46% (van der Zee 
Arias et al. 2012). This to establish potential land cover that may be affected by 
drought and may cause multi-country unsustainability.

5.3 Methodology 

5.3.1 Data Acquisition 

Past drought events required the use of comprehensive and detailed satellite data 
to assess and monitor past drought events. Both hydrometeorological variables and 
earth observation data were used (Sexton et al. 2013).  As  shown in Table  5.1. Where 
data sets of the best available temporal and spatial resolution are used.
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Fig. 5.5 Land-cover migration and trends over 2000 to 2020

Table 5.1 Climatological and remote sensing data source description 

Data Source Variable Temporal 
resolution 

Spatial 
resolution 

ERA-5(Beck 
et al. 2017) 

European Center for 
Medium-Range Weather 
Forecasting ECMWF 

Precipitation 1981-present 0.25° 

ERA-5(Beck 
et al. 2017) 

European Center for 
Medium-Range Weather 
Forecasting ECMWF 

Temperature 1981-present 0.25° 

MODIS (Zhao 
et al. 2005) 

NASA LP DAAC at the 
USGS EROS 
Center/GoogleEarthEngine 

Satellite 
imagery 

2000-present 500 m 

5.3.2 Drought Calculation 

Drought calculation needs and indicator that represents a quantitative drought condi-
tion according with the magnitude of specific variable. Drought indicator can be used 
to define drought (dry condition) with any variable like meteorological drought: based 
on precipitation condition or agricultural drought: based on water balance [P-ETP] 
(Van Loon 2015). 

However, drought indices are not universally accepted to characterize the drought 
conditions (Okal et al. 2020) because depends of the driver factor and regional 
context. In this way, the rainfall and vegetation health are significant factors that 
could show the influence of drought frequency or severity for instance.
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Table 5.2 NDVI drought 
category based on 
(Rokhmatullah et al. 2018) 

Drought category NDVI range 

No drought > 0.25  

Moderate drought 0.1–0.25 

Severe drought 0.05–0.1 

Extreme drought ≤ 0.05 

5.3.3 Drought Vegetation Monitoring Indexes 

The analysis of surface drought conditions (vegetation response, soil moisture) based 
on remote sensing information involves transforming the data or bands and applying 
a standardized transformation as a vegetation index. MODIS datasets were used to 
estimate vegetation indices for the period 2000–2020. Among these indices, the most 
common and sensitive to vegetative dynamics are NDVI and VCI. 

5.3.4 Normalized Difference Vegetation Index NDVI 

The normalized difference vegetation index NDVI, is an index that measure of the 
phenological vegetation condition. It was computed from Terra platform with 250 m 
spatial resolution from MODIS server using the relation of Infrared (NIR) and Red 
band (RED) as its shown in (5.1). 

NDVI = 
BandNIR − BandRED 
BandNIR + BandRED 

(5.1) 

This product was corrected using GIS techniques to correct geometrical overlap-
ping and radiometric fluctuations and cloudy pixels were removed (Kogan 1997). 
Then was categorized to represent drought condition scale as (Rokhmatullah et al. 
2018), that represents whether photosynthesis characteristics is above or below of 
average condition (Table 5.2). 

5.3.5 Vegetation Condition Index VCI 

Vegetation condition index VCI, is calculated from NDVI product using (5.2). VCI 
is a pixel-based index by considering of mean and maximum multi-annual variability 
(Kogan 1997). 

VCI = 
VCIi jk  − VCIi, min 

VCIi, max − VCIi, min 
× 100 (5.2)



84 K. A. S. Hernández and G. A. C. Perez

Table 5.3 VCI drought 
category based on 
(Rokhmatullah et al. 2018) 

Drought category VCI range 

No drought > 30  

Moderate drought 20–30 

Severe drought 10–20 

Extreme drought 0–10 

where VCIijk is the VCI value for the pixel i during month j for year k, VCIijk is the 
monthly, VCI value for pixel i in month j for year k. VCI, VCIi, min  and VCIi, max  are 
the multiyear minimum and maximum of VCI, respectively, for pixel i (Kogan 1997). 

Then was categorized to represent drought condition scale regarding with the vege-
tation growing season as 30% below, as its shown below on Table 5.3 (Rokhmatullah 
et al. 2018). 

5.3.6 Climatological Drought Indexes 

Drought indices are associated numerically with the value of hydroclimatic variables 
that may reflect changes in their hydrological regime or quantity, such as meteoro-
logical, agricultural, and hydrological variables, representing factors that contribute 
to or counteract the occurrence and propagation of droughts (Habibi et al. 2020). 
These methodologies, mainly involve a simplification process, in which an anomaly 
or a normalization of the values of these driving factors is considered to influence 
the magnitude of other physical variables highly related to water deficits, the most 
used of which generalize a standardization of the driving source of water such as 
precipitation (SPI) and water balance (SPEI) (Depsky and Pons 2020; Belayneh et al. 
2014). 

5.3.6.1 Standardized Precipitation Index SPI 

The SPI computation is based on the long-term precipitation records cumulated over 
a selected time scale. According with Husak, 2007. This methodology allows to fit 
this kind of data using gamma probabilistic distribution (5.3) and then standardized 
by normal distribution to obtain deviations from each precipitation record (Blain 
2011). 

g(x) = 1 

βαΓ(α) 
xα−1 e−x/β (5.3) 

where, α, β are scale and shape parameters that could be obtained using L-moments 
method. According to the SPI, drought starts when the SPI value is equal or less than 
−1.0 and ends when the value becomes zero or high (Table 5.4).



5 A Comparative Analysis of Spatiotemporal Drought Events … 85

Table 5.4 SPI drought 
category based on 
(Rokhmatullah et al. 2018) 

Drought category Spi range 

No drought > −1 

Moderate drought −1.5 to −1 

Severe drought −2 to  −1.5 

Extreme drought ≤ −2 

5.3.6.2 Standardized Precipitation Evapotranspiration Index SPEI 

Standardized Precipitation Evapotranspiration Index SPEI is calculated as water 
balance stablishing the difference between precipitation and potential evapotranspi-
ration PET for the desired month as (5.4), then its normalized by log-logistic proba-
bilistic distribution (5.5) to define the drought indicator (Diaz et al. 2020b), describing 
the water balance impacts according to the drought severity. The Thornwaite 
approach is widely applied to compute the PET (Bae et al. 1981). 

WBi = Pi − PETi (5.4) 

f (x) = 
β 
α 

( 
x − γ 

α 

)β−1
⎡ 

1 − 
(
x − γ 

α 

)β
⎤−2 

(5.5) 

where, (α, β ,γ ) are scale, shape and origin parameters that could be obtained using 
L-moments method. Then as SPI, drought scale is the same (Table 5.5). 

5.3.7 Spatiotemporal Monitoring 

The spatiotemporal approach is based on the methodology proposed by Corzo and 
Vitali, 2018. This methodology allows to perform an articulated analysis between 
the spatial and temporal changes of the observed drought events within the region, 
after the extraction of the drought extensions (areas), and its subsequent estimation 
of its location and temporal marks that allow evaluating its propagation and mobility 
in space and time, which allows addressing the problem related to its dynamics. 
(Diaz et al. 2020b). However, this methodology has only been applied under the use

Table 5.5 SPEI drought 
category based on 
(Rokhmatullah et al. 2018) 

Drought category SPEI range 

No drought > −1 

Moderate drought −1.5 to −1 

Severe drought −2 to  −1.5 

Extreme drought ≤ –2 
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of hydroclimatic drought indices such SPI or SPEI, so the proposed methodology 
proposes three stages, initially correlative analysis for the estimation of related accu-
mulation periods (SPI-n, SPEI-n, VI-n) followed by the analysis of non-contiguous 
drought areas (NCDA). Finally, applying continuous drought areas (CDA) approach 
and tracking. 

5.3.7.1 Correlation Analysis 

To implement the spatiotemporal tracking methodology, it is necessary to identify 
the relationship between drought areas, magnitude and frequency, which are measur-
able between climatological and vegetation-based indices. This will allow gener-
ating a better understanding of the applicability of satellite indices in spatiotemporal 
drought monitoring (Jiao et al. 2016). For this purpose, Pearson’s correlation test 
was used, between the monthly time series of SPI-n, SPEI-n, (where n, represents 
the lag-time variable) and Vegetation Indices (VI) such as VCI, and NDVI for the 
period 2000–2020. Considering the time series from January to December (annual 
cycle), and the growing season (April to September), thus establishing the periods 
with the highest degree of autocorrelation in different periods of accumulation and 
significance (Kogan 1997). 

5.3.7.2 Non-Contiguous Drought Area Analysis (NCDA) 

After the drought indices computation and their spatial representation verification. 
Threshold analysis is defined. This threshold allows to define a boundary at which 
the drought will be defined for its integrated analysis (in space and time) for time 
series and spatial grid. 

That means, the threshold values below the water normal condition −1.0, was 
established to extract the drought true zones in the period 1981–2020 for SPI-n 
and SPEI-n and below 0.25 and 30% for NDVI and VCI, respectively, as shown in 
Fig. 5.6: 

where, I indicates normal values of the drought index, II, establishes thresholder the 
drought categories and III represents the drought areas in a cluster.

Fig. 5.6 Drought index thresholding and binarizing 
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Fig. 5.7 Extracting CDA units using connected components technique 

5.3.7.3 Contiguous Drought Area Analysis (CDA) 

Contiguous Drought Area, is based on spatial clustering of drought adjacent cells. 
These drought cells are identified at each time step (Corzo 2019). If the drought 
indicator is lower or equal than the threshold, it is binarized between 0 and 1, where 
a value of 1 indicates that the cell is in drought. Otherwise, 0 is used, indicating no 
drought (Diaz et al. 2020b). 

Image analysis approach was done using a Graphos Technique. Connected 
Labeling Component technique that consists of generating subgroups of patterns 
in an image (clusters) based on its cell value to connect it (Fig. 5.7) (Herrera-Estrada 
et al. 2017). 

5.3.7.4 Spatiotemporal Propagation–Tracking Events 

Once the contiguous areas are estimated, the largest cluster is extracted at each 
time step and geospatial properties such as centroid coordinates (x, y), relative 
area/perimeter are calculated (Diaz et al. 2020b). Then, for each largest event over 
time, the centroid obtained is analyzed by calculation of overlapping percentage and 
Euclidean distance to define the trajectory for each largest drought in time (Diaz 
et al. 2020a) (Fig. 5.8).

where t represents each time step (2000–2020), Ci represents the clusters, and the 
black spots CDA units.
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Fig. 5.8 Outlining of 
tracking approach based on 
(Blain 2011)

5.4 Results and Discussion 

5.4.1 Climatological Drought Index 

Based on ERA5 data, the standardized SPI-n and SPEI-n indices were calculated for 
accumulations of (n= 1, 3, 6 months) as shown in Fig. 5.9, shows the drought and non-
drought values (red and blue, respectively), and their attenuation when considered as 
oscillations in the more attenuated time series, thus allowing to identify temporally 
how an event develops as a function of its magnitude in response to the water deficit.

As its shown in the Fig. 5.9, values for drought index SPI and SPEI below −1.0, 
reflects a moderate to extreme drought pattern, increasing in frequency over the last 
decade, with an average of 45–70 periods of drought-associated water deficits (Van 
Loon 2015; Sutanto et al. 2020; Hydrologic remote sensing: capacity building for 
sustainability and resilience 2007). 

Temporal characteristics of interannual changes may reflect the characteristics 
of the long-term change in drought. SPI and SPEI variations, in other words, share 
similar patterns at various time scales, but the lag in the accumulation (lag-time 1, 3, 
6) allows the temporal attenuation of the drought magnitude to be appreciated (lower 
peaks that represents extreme drought magnitude), causing its trend to increase in 
relative area terms (Entekhabi et al. 2010; Zhang et al. Mar. 2022; Ebrahimi et al. 
2010). 

On the other hand, the SPI and SPEI monthly variation characteristics clearly 
reflect the change in the degree of dryness and humidity in each month, especially in 
the last 20 years (Jiao et al. 2016; Poornima and Pushpalatha 2019; Al-Shujairy et al. 
2019). However, when increasing the periods of analysis and looking in contrast at 
the same accumulations (SPI-6, SPEI-6), drought was more frequent in the months of 
March to June and October to January (Fig. 5.10), generating extensions in terms of 
area and deficit more frequent in meteorological drought (SPI) and more prolonged 
for agricultural drought (SPEI).
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Fig. 5.9 SPEI (left), SPI (right) for (1, 3, 6, 9, 12 months lagged) time series
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Fig. 5.10 Comparison SPEI (left -a-), SPI (right -b-) for 6 months lagged (x-axis years and y-axis 
month) 

5.4.2 Drought Vegetation Monitoring Indexes 

NDVI trends in the vegetative cycle is analyzed, considering the phenological growth 
as illustrated in Fig. 5.11, which allows inferring the vegetative activity as a function 
of temperature and water stress cycles (Colliander et al. 2017; Hafni et al. 2022). For 
this purpose, the monthly NDVI series corresponding to the maximum mean NDVI 
was selected. 

For the dry corridor of Central America, a bimodal phenological pattern is 
observed for the periods January–May and July–October, which are directly related 
to rainfall patterns (Fig. 5.12). In this way, the vegetation onset depends on the meteo-
rological conditions in the area by year, but not necessarily depends on the vegetation 
type or crop productivity. (Jong et al. 2011).

Fig. 5.11 Phenological growing season scheme, based on (Peters et al. 2002) 
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Fig. 5.12 NDVI monthly trends 

However, the derivation of the VCI required a NDVI trend normalization, which 
is implemented by the LOWESS smoothing technique (locally weighted running line 
smoother) proposed by (Kogan 1997; Cai et al. 2017). 

x = f (x) + ε1x1 + ε2x3 + εnxn (5.6) 

w(x) = {(1 − |x |3)3 : |x |<10 : |x |>1 (5.7) 

Which, if NDVI trends (5.6) with noise ε should be adjust to a normal distribution, 
then each data value (x) is replaced by a combination of adjacent values of the normal 
series in a window w(x), using a second order polynomial least squares fit (Kogan 
1997). Generating a new time series normalized, (Hilda 2017; Prasetyo et al. 2019) 
allowing a reconstruction of the time series in which the leaf area and photosynthetic 
activity is easily appreciable (Murakami et al. 2016; Soudani et al. 2012; Gong 2022). 
This methodology is tested with 3 filters or smoothing window, in which the degree 
of smoothing is estimated by least squares minimization, thus allowing to reduce by 
attenuations sudden changes in NDVI as its shown in Fig. 5.13 (Cai et al. 2017).

5.4.3 Spatiotemporal Approach 

After obtaining the drought indexes based on hydro climatological data like SPI, 
SPEI, and remote sensing-based like NDVI and VCI, a correlative analysis was 
carried out to establish those time accumulations that were related to each other 
to implement the spatiotemporal analysis. This correlation was generated from the 
binarization of each index given the threshold set out in the methodology (NCDA).
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Fig. 5.13 NDVI comparison applying LOWESS smoothing
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However, each drought scale proposed, in terms of magnitude varying, their spatial 
relationship may not fit because each index takes into account different aggregate 
factors, e.g., VCI standardizes NDVI in phenological response and SPI 3 standardizes 
precipitation as a function of three-monthly accumulation, which involves highly 
variable significances (−0.42 to 0.86) as shown in Figs. 5.14 and 5.15. 

Fig. 5.14 NCDA approach correlation for SPI (−1 to inf) and VCI (0.2−1) 

Fig. 5.15 NCDA approach correlation for SPEI 3 (−1 to inf) and VCI (0.2- inf)



94 K. A. S. Hernández and G. A. C. Perez

Table 5.6 Drought indices general correlation 

SPI 1 SPI 3 SPI 6 SPEI 1 SPEI 3 SPEI 6 

NDVI 0.3 0.418 0.7854 0.369 0.687 0.642 

VCI 0.32 0.518 0.419 0.378 0.542 0.867 

Therefore, equivalent drought ranges had to be established for their analysis, 
which implied for each category, moderate, severe, and extreme drought, to find 
those optimal ranges that had greater significance and representativeness in terms of 
the area under drought condition (NCDA). 

Thus, a relationship range is found between the percentages of the area in repre-
sentative drought and their spatial autocorrelation (Ghulam et al. 2007; Jiao et al. 
2016; Peters et al. 2002). As shown in Table 5.6, the net correlation between climatic 
and remotely sensed indices varies between (0.39 and 0.89), being the combination 
SPI-3 (moderate drought)– VCI (extreme) and SPEI 6 (extreme)– VCI (extreme) the 
most significant one. These results allow validating a priori the viability of NDVI 
and VCI as indices for spatiotemporal drought monitoring. 

Following the maximum significance criterion (Pearson coefficient > 0.6), the non-
contiguous drought area percentages (NCDA) are obtained, as shown in Fig. 5.16, 
which comparatively compares the NCDA results for the SPEI-6-VCI combination, 
where there is a ratio of 2.4:1 in terms of the magnitude of the area. Locating in a 
temporal way, months between October to January and May to August with greater 
areas of drought and annually related to El Niño Southern Oscillation periods in the 
last two decades, like 2019, 2015, 2014, 2012, 2004, and 2003 (Sheffield et al. 2009).

Binary grids are then generated, and the connected component algorithm is 
used to find the largest clusters or contiguous drought units (CDA) that are most 
representative for subsequent monitoring as its shown in Fig. 5.17.

5.4.4 Drought Tracking 

Considering, these grids that represent the largest clusters (Fig. 5.18), the character-
istics of centroid location and area are extracted to evaluate whether an event t is 
related to an event  t + 1. (Fig. 5.19) where shows the most representative centroids 
related to drought area extensions. However, as it is a dynamic phenomenon, the 
drought that can be visualized in a hydro climatological index is not so perceptible 
based on vegetation, as the phenological growth cycle only indicates for a certain 
crop or cover which orientation will have the water deficit. Overlap metrics were 
employed, excluding events that do not exceed at least 30%.

As shown below in Figs. 5.20 and 5.21, the main trajectories reported according 
to SPI-SPEI and VCI are presented.



5 A Comparative Analysis of Spatiotemporal Drought Events … 95

Fig. 5.16 NCDA percentage of area for SPEI 6 (−1 to inf) and VCI (0.2–1)

Fig. 5.17 CDA clustering for VCI index
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Fig. 5.18 CDA clúster characteristics dataset 

Fig. 5.19 Main centroids of highest drought events
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Fig. 5.20 Main trajectories based on spatiotemporal approach driven with SPI-SPEI dataset 

Fig. 5.21 Main trajectories directions based on spatiotemporal approach driven with VCI dataset
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For SPI and SPEI, estimated trajectories emphasize that the average extend is 
between 8 and 13 km (Sánchez Hernández 2022). The longest drought trajecto-
ries mainly have origin in Guatemala and El Salvador, where are related to wind 
patterns, low atmospheric moisture, and high pressure/temperature (Cook et al. 2018; 
Dominguez and Magaña 2018; Aguilar et al. 2005). Orographically moderate thermal 
gradient phenomena in the western of the Central America dry corridor countries, 
allow decreasing the severity of drought and extension (Sánchez Hernández 2022). 

However, the trajectories determined for the indices derived from remote informa-
tion are mainly characterized by being short compared to the previous ones (average 
distance less than 3 km), which, although they do not allow the evaluation of cluster 
migration or large drought events over long distances, they do give an overview of 
the average direction in which they manifest themselves and their orientation allows 
the adoption of crop protection technologies or agricultural practices. 

As can be seen in Fig. 5.21, the orientation is in a northeast position, and when 
contrasted with Fig. 5.20, there is a high relationship concerning regional hydro 
climatological aspects. 

5.5 Conclusions 

Central American dry corridor, drought impacts and water scarcity is increasing. 
Spatiotemporal analysis and validation of remote sensing information is a game-
changer in this type of study requirements, becoming efficiently applicable in sectors 
with low data availability or early warming tool for regional monitoring (Gong 2022; 
Jiang et al. 2017; Zhang et al. 2019). 

This study evaluated the drought dynamics using a reproducible drought vegeta-
tion index VCI using remote sensing data to 2000–2020, allow identifying the stressed 
vegetation spatial distribution, associated with drought conditions with cutting-edge 
technologies. 

Some preliminary results allow using remote sensing data as NDVI as drought 
monitoring data source. However, remote sensing data still have some limitations that 
should be considered in future studies. Radiometric interferences, satellites position 
can affect the geometry of source, scale, for instance. 

Regarding drought areas, the approximation and adaptation of the spatiotemporal 
analysis methodology allowed us to observe a greater concentration of drought events 
in regions that are directly affected by global oscillations such as ENSO, hurricanes 
(geographical limits with Pacific Ocean). 

El Salvador, Nicaragua, Costa Rica and Guatemala for example, in the northwest, 
show the highest density of events per phenological cycle (January–May) and (July– 
October). Additionally, due to aspects such as resolution and scale of the index, it is
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established that the most important migrations of water stress are highly related to 
the mentioned density, which allows the generation of strategies or opportunities for 
sustainable agriculture and improvement of drainage systems. 

Central America dry corridor countries, over 20 years was found that the relation-
ship between the SPI water deficit on short-term scales together with the VCI values 
increases proportionally, however, SPEI shows a stronger relationship because of 
the physical comparison of two observable or measurable agricultural conditions 
(vegetation condition, evapotranspiration) observed for SPEI 6. 

For the years 2000, 2004, 2015, and 2019, longer drought durations and extensions 
were observed, which lead to extreme events and are highly related to the anthropic 
migrations of land use reported by FAO (2019); To reduce El Niño’s impact on Central 
America’s Dry Corridor, build resilience and invest in sustainable agriculture 2022; 
World Food Programme 2002). 

5.6 Recommendations 

According to the findings of this chapter, it was validated that the VCI has greater 
potential for agricultural drought monitoring than NDVI, and that NDVI is highly 
correlated with water deficit SPI in 3 months lags and SPEI in 6 months lags. However, 
some interferences may be associated with the scale magnitudes of the products, 
which is suggested to verify in detail which geo-correlation and de-scaling method 
allows geostatistics to have more consistent products, as well as methodologies such 
as Whitaker (Jiao et al. 2016) for time series smoothing. 

More research is needed in case we want to apply this methodology at the crop 
level, which can strengthen the analysis by establishing productivity in terms of stress 
associated with drought, thus generating more detailed results and greater efficiency 
in terms of drought to the cross-border productive sector. 

Finally, it is recommended the use of matching algorithms based on geostatistics to 
improve the performance of both satellite-based indices and their trajectory tracking, 
such as GWR and Multivariate Kriging, mainly (Nejadrekabi et al. 2022; Dutra et al. 
2021; Baniya et al. 2019). 
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Chapter 6 
Application of GIS and Remote Sensing 
Tools in Assessment of Drought Using 
Satellite and Ground-Based Data 

R. V. Galkate, Sukant Jain, R. K. Jaiswal, R. P. Pandey, A. K. Lohani, 
Shalini Yadav, and Ram Narayan Yadava 

Abstract Satellite-based data, information, and indices have been very efficient and 
useful for rapid assessment of drought situations. They can be proven even more effec-
tive if tested using appropriate indicators derived from physically observed ground 
station-based climatic data. This chapter examines the effectiveness of satellite data 
in drought characterization. The MODIS Normalized Difference Vegetation Index 
(NDVI) data were used to monitor vegetation health and drought in the Bundelkhand 
region of Central India using the NDVI-based Vegetation Condition Index (VCI), 
and the results were compared to the Standardized Precipitation Index (SPI). Using 
rainfall departure analysis and SPI on a three-month time scale, long-term rainfall 
data from the Bundelkhand region were used to assess the extent of meteorological 
drought and identify the driest years. The VCI was calculated using satellite-based 
NDVI data from the same period. Three-month SPI was evaluated for the severe 
drought years identified through rainfall departure analysis and compared to VCI 
results. In October 2015, both SPI and VCI indicated extremely severe drought. The 
satellite-based indicator VCI has been found to interpret results that are consistent 
with the drought index SPI, which is evaluated using observed ground station-based 
data, indicating the utility of satellite data in quick drought monitoring. 
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6.1 Introduction 

Drought is a cyclic phenomenon that has a slow onset and terminates with a definite 
end. It can trigger serious damage to vegetation if it continues to evolve. Although 
the primary indicator of drought severity is rainfall, other factors are also needed to 
properly assess the severity of the situation. A comprehensive drought assessment 
system should also include other indicators to monitor the various aspects of drought. 
Some of the indicators used in a comprehensive drought assessment are tempera-
ture, streamflow, groundwater level, soil moisture, and reservoir level. Drought is a 
period of extremely dry weather conditions that usually affects the vegetation cover 
of the Earth. This condition has gained the importance of satellite data in monitoring 
environmental factors. Droughts are one of the most dangerous environmental disas-
ters, causing adverse impacts on the natural ecosystem, hydrological and agricultural 
systems (Bond et al. 2008). Drought generally occurs due to a lack of precipitation 
and variability in rainfall patterns. Droughts seem like a situation of below-normal 
rainfall and evolve into a dangerous climatic event with significant consequences for 
the environment. Drought has affected about half of the global population (Kogan 
et al. 2019). It is one of the serious phenomena and ranks on top among all the natural 
hazards concerning the number of people gets affected globally (Dunn et al. 2018). 
Drought risks build up gradually, which often accumulate over a long period, and 
might last for years after the drought is over (Mishra and Singh 2010). The drought 
severity, onset, as well as withdrawal, are not only difficult to identify but quan-
tify also. According to a recent Intergovernmental Panel on Climate Change (IPCC) 
report, maize, wheat, and rice production have decreased in various regions of Asia 
during the last few decades owing to global warming, water stress, a decrease in 
rainy days, and the frequency of El Nino occurrences (IPCC 2014). 

Droughts in India are classified into three types by the National Commission 
on Agriculture: meteorological, hydrological, and agricultural (Mirdha 1973). A 
meteorological drought occurs when an area receives less than 25% of its normal 
precipitation. Long-term meteorological droughts cause hydrological drought which 
results in the drying up of rivers, streams, lakes, and reservoirs, as well as a decrease 
in groundwater level. Agricultural drought occurs when soil moisture is insufficient 
to support healthy crop growth during the growing season, resulting in crop stress 
and wilting. India has a total geographical area of 3.38 million km2, of which approx-
imately 1.08 million km2 is subject to varying degrees of drought and water stress 
(Jain et al. 2009). In the last five decades, India has been one of the most vulner-
able and drought-prone countries, where drought occurs almost in every three years 
(Miyan 2015). Droughts have caused significant agricultural and economic losses 
in India in the past, most prominently in 1877, 1899, 1918, 1972, 1987, and 2002 
(Yadav 2009). In comparison to Northern India, the peninsular western and central 
parts of the country are primarily affected by drought. Droughts are causing adverse
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impacts on water resources, agriculture, rural livelihoods, and the economy in Central 
India, particularly in the Bundelkhand region of Madhya Pradesh state (Kundu et al. 
2015; Pandey et al. 2010). Drought is common in these areas due to factors such as 
monsoon season uncertainty, high temperatures, and unfavourable meteorological 
conditions. 

Drought must be assessed and monitored using scientific techniques to reduce 
future risks and potential dangers. Traditional drought monitoring relies on ground-
based observations of meteorological and hydrological data including precipita-
tion, temperature, evapotranspiration, soil moisture, surface runoff, and groundwater 
levels. Several drought indicators have been developed in recent years based on this 
single location data such as the Standardized Precipitation Index (SPI) (Guttman 
1999), Crop Moisture Index (Palmer 1968), Palmer Drought Severity Index (Palmer 
1965), Soil Moisture Drought Index, Streamflow Drought Severity Index, Ground-
water Drought Index. Many studies have successfully applied the SPI, which is 
related to the probability of occurrence of wet and dry events, many researchers 
efficiently for monitoring the spatial extension and intensity of droughts, at different 
time scales of 3, 6, 12, and 24 months (Belayneh and Adamowski 2012; Khan et al. 
2008; Thomas et al. 2015). It takes longer for deficiency in precipitation to affect 
the streamflow, soil moisture, reservoir, and groundwater levels. SPI on 1 and 3-
month time scales is associated with soil moisture and precipitation deficit; however, 
the hydrological drought is associated with the SPI-6 which indicates precipitation 
deficit for more than 6 months (Van Loon 2015). Although meteorological data from 
ground-based stations have a high level of accuracy and are widely utilized across 
the world, the density and distribution of meteorological stations are insufficient 
for spatial data extraction. Without an optimal network of meteorological stations 
throughout the study region, the geographical extent of drought cannot be accurately 
assessed (Vicente-Serrano and López-Moreno 2005). Even yet, the time and cost of 
data preparation, as well as the risk of errors, may cause a delay in drought miti-
gation operations. In this context, drought monitoring using satellite-based data has 
gained widespread acceptance in recent decades because of its low cost, ease of data 
acquisition, synoptic perspective, and reliability. 

The conventional approaches for drought monitoring that uses ground-based data 
are difficult, laborious, and time-consuming. Thus, monitoring the biosphere using 
satellite data has gained importance in several aspects of environmental monitoring 
including drought monitoring. For the assessment, prediction, and monitoring of 
drought, remote sensing and GIS technologies are better than traditional techniques 
as they are capable to cover the Earth’s surface (Abdulrazzaq et al. 2019). This capa-
bility was only achieved after the launch of the Advanced Very High-Resolution 
Radiometer (AVHRR) mission in 1979. Various studies have been conducted on the 
use of the National Oceanic and Atmospheric Administration (NOAA) AVHRR to 
study the effects of drought in depth. One example is the integration of temperature 
and Vegetation Condition Index data collected by the AVHRR to monitor the heat-
wave in India (Pal et al. 2020). They integrated the TVDI and the Regional Water
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Index (RWI) to measure the drought in China’s Shandong Province. AVHRR acts 
as an evolution for some next-generation missions like the MODIS platform. The 
ability to identify and monitor water vapour absorption and chlorophyll in its NIR and 
red bands, respectively, makes this mission more efficient for analytical applications 
(Chen et al. 2020). 

Many drought indices are developed based on remote sensing data such as 
the Normalized Difference Vegetation Index (NDVI) (Tucker 1979), Land Surface 
Temperature (LST), Temperature Vegetation Drought Index (TVDI), Vegetation 
Condition Index (VCI) (Kogan 1990). VCI is more significant in drought monitoring 
when compared to NDVI and TVDI. VCI can distinguish between climatic and long-
term biological signals, making it more capable of detecting moisture deficits. VCI 
can provide more precise results than other remote sensing-based indices, which is 
useful for monitoring and quantifying droughts in non-homogeneous areas (Hateren 
et al. 2020). Several studies have validated VCI’s accuracy, so it is widely used in 
drought monitoring and analysis (Du et al. 2013; Jain et al.  2009; Liu et al. 2020; 
Unganai and Kogan 1998). However, only remote sensing-derived techniques are not 
sufficient for generating a clear picture of drought studies. It needs to be integrated 
into other field variables like in situ data related to hydrology, climate, biophysical, 
and other supporting datasets (Ahmadalipour et al. 2017). Collaboration of remote 
sensing data with other fields can help achieve accuracy in drought assessment and 
prediction. 

The various remotely sensed data serve as input for the various methods, which are 
used for the identification, monitoring, and assessment of the drought. It is facilitated 
by several satellite-based indices like NDVI, VCI, SVI, NDWI, CWSI, TCI, VHI, and 
TVDI in visible, near-infrared, thermal infrared, and microwave regions, to target 
and analyse the concerned areas (Murthy 2020; Qin et al. 2021). Among these, 
the NDVI is also one of the popular and well-accepted remote sensing indices for 
agricultural drought. The “Normalized Difference Vegetation Index” (NDVI) is the 
most prominent vegetation index derived from remote sensing data to be used in the 
identification and monitoring of vegetation. The NDVI is not only used in its primary 
form but also used in several other forms to relate to the phenology of the vegetation 
cover. The mean of NDVI is used for overall greenness, maximum of NDVI for peak 
greenness, NDVI amplitude for real-time greenness, and multi-temporal NDVI for 
vegetation monitoring. The NDVI is a foundation for derivation of various other 
advanced remote sensing indices. 

The “Vegetation Condition Index” (VCI) is a remote sensing index that is derived 
from the NDVI. The VCI is computed as pixel-wise normalization of the NDVI. It 
was first developed from AVHRR NDVI from Goddard Earth Sciences Distributed 
Active Archive Centre (GES-DAAC), for the control of local differences in ecosystem 
productivity. The VCI values can be averaged spatially and temporally to facilitate 
comparison with the meteorological drought indices. The condition of vegetation 
was thought to be supported by additional information. Temperature is one of those 
supporting parameters which can address drought. With the same idea, the “Temper-
ature Condition Index” (TCI) is developed to support the VCI. It is derived from the 
thermal band which is converted to brightness temperature. The primary use of TCI
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is to determine vegetation stress related to temperature. It is also useful in estimating 
stress caused by excessive wetness (Drisya and Roshni 2018). Another index was 
developed called as “Vegetation Health index” (VHI) from the joint information of 
VCI and TCI (Bento et al. 2018; Han et al. 2020). The TCI teams up along with 
VCI to form VHI as a substitute index characterizing vegetation health. The VHI is 
defined as VHI = a VCI  + (1–a) TCI where ‘a’ is the coefficient determining the 
contribution of the two indices. The value for VHI less than 40 represents the presence 
of vegetation stress and greater than 60 favours good conditions for vegetation. 

The entire remote sensing-derived drought indices discussed above are more or 
less comparable with each other, but the service returned by them is fulfilled for 
the same purpose. The various indices relating to different categories are explained 
with their application and usage. Each index in each category has its advantages and 
limitations due to which their usage is limited and applied wherever the respective 
index is appropriate. The application of each index is defined which is taken into 
consideration in deducing the best index suitable for the present research work. Thus, 
the present study focuses on evaluating drought indicators based on the integration 
of meteorological and satellite-based indices in the Bundelkhand region of Madhya 
Pradesh, which experiences recurrent droughts. 

6.2 Materials and Methodology 

This section describes in detail the study area, data collection, methodology used 
to achieve results, and analysis performed. Rainfall-based departure analyses were 
used to identify the dry periods using long-term rainfall data from five stations in 
the Bundelkhand region falling in Madhya Pradesh state. The monthly rainfall-based 
index, three-month SPI, is estimated for the monsoon season of the identified severe 
drought years. Furthermore, satellite-based data index VCI is calculated over the area 
using long-term MODIS-based NDVI for the monsoon season of the same classified 
drought years. 

6.2.1 Study Area 

Madhya Pradesh is a centrally located state in India. The present study has been 
carried out in the Bundelkhand region located in the northern part of Madhya Pradesh 
state comprising five districts Sagar, Damoh, Chhatarpur, Tikamgarh, and Panna as 
shown in Fig. 6.1. The Bundelkhand region is located between 23.14° and 25.55° lati-
tude and 78.05° and 80.67° longitude covering an area of 37,479 km2. The Bundelk-
hand region of Madhya Pradesh state faces the problem of recurrent droughts that are 
unpredictable both in their occurrence and duration; hence, predictions and prepared-
ness against droughts would be key elements for minimizing their impacts (Galkate 
et al. 2015). The Bundelkhand region has long been regarded as a drought-prone
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Fig. 6.1 Location of study area (Bundelkhand region of Madhya Pradesh) 

region of the country, but drought frequency and severity have increased in recent 
decades (Gupta et al. 2014). The region receives an annual rainfall of more than 
1100 mm. Around 80% of the population is directly dependent on agriculture which 
is mostly rain-fed and susceptible to drought. The major rivers flowing through the 
study area include Betwa, Sindh, Tons, and Chambal, and all are tributaries to the 
Ganga River. The topography of the region is undulating, with boulder-strewn plains 
and rocky outcrops and in a rocky landscape. Wheat and soybeans are the major 
crops grown in the Rabi and Kharif seasons, respectively. The major soils in this 
region include alluvial, black soils, and mixed red soil. 

6.2.2 Statistical Analysis 

The rainfall statistics of five rain gauge stations Sagar, Damoh, Panna, Tikamgarh, 
and Chhatarpur of the Bundelkhand region have been worked out using 38 years of 
rainfall data from the year 1980 to 2017. The rainfall data have been collected from 
India Meteorological Department and State Data Centre, Madhya Pradesh Water
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Resources Department, Bhopal. The statistical analysis of annual, monsoon, non-
monsoon, and monthly rainfall has been carried out to estimate average rainfall, 
standard deviation, and coefficient of variation of five stations and the Bundelkhand 
region to understand rainfall pattern and their variability. 

6.2.3 Rainfall Departure Analysis 

The annual rainfall departure analysis performed the determination drought years, 
frequency, return period, and severity in the study area. As suggested by India Mete-
orological Department, a year can be considered a drought year when the annual 
rainfall deficit is more than 25% of its long-term normal rainfall (Appa Rao, 1986). 
Further, the meteorological drought can be classified according to its severity level. It 
is considered a moderate drought when the annual rainfall deficit is between 25 and 
50% and a severe drought when the annual rainfall deficit exceeds 50% of the normal. 
The percentage departure of the annual rainfall time series has been calculated using 
Eq. 6.1. 

Percentage of Departure = Annual Rainfall − Average Annual Rainfall 
Average Annual Rainfall

× 100 
(6.1) 

6.2.4 Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) assigns a numeric value to the precipita-
tion based on the deficit severity, and it can be associated across regions with different 
environments. In brief, SPI is the number that represents the standard deviation of 
precipitation data from its long-term average for a normally distributed series. As 
the precipitation data is not normally distributed, a gamma distribution is fitted to the 
rainfall data to determine the cumulative probability which is then transformed to the 
standard normal random variable ‘Z’ with mean zero and variance one, which is the 
value of SPI. The SPI determines the probability of occurrence of wet and dry events 
at different time scales, i.e. 1–24 months which are associated with different types of 
droughts. The three-month SPI values are indicative of soil moisture conditions as 
well as meteorological drought; hence, in this study, analysis has been carried out to 
assess drought severity in the study area using three-month SPI values and its compar-
ison with satellite-derived index. For this analysis, monthly rainfall time series of 
38 years from the year 1980 to 2017 was used for five stations in the Bundelkhand 
region.
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Table 6.1 SPI classification 
and their values 

2.0 + Extremely wet 

1.5–1.99 Very wet 

1.0–1.49 Moderately wet 

−0.99–0.99 Near normal 

−1.0–−1.49 Moderately dry 

−1.5–−1.99 Severely dry 

−2 and  less Extremely dry 

Drought characteristics based on their severity can be assessed using an analytic 
method to determine the cumulative probability (McKee et al. 1993). The cumulative 
probability, H(x), is then converted into the standard normal random variable ‘Z,’ 
which has a mean of zero and a variance of one and is the SPI value. The Z or SPI 
values are more easily estimated using an approximation that converts cumulative 
probability to the standard normal random variable Z (Abramowitz and Stegun 1965). 
The SPI computation for each place is based on the long-term precipitation data of 
the selected period. The long-term data are fitted to a probability distribution, which 
are then converted into a normal distribution, resulting in a mean SPI of zero for the 
chosen place and duration (Edwards 1997). The SPI values and their classification 
indicating severity range are shown in Table 6.1. 

In the derived SPI series, when continuous negative values of SPI reach an intensity 
of −1.0 or less and then SPI remains constantly negative, a drought event has begun, 
which will terminate when the SPI becomes positive. As a result, each drought event 
has a duration that is determined by its start and end dates, as well as its intensity 
and severity. In the Bundelkhand region, the rainfall season comprises four to five 
rainy months, i.e. June, July, August, September, and October, and rainfall deficit 
during initial monsoon months will have cumulative impacts during later monsoon 
months, i.e. August, September, and October. Therefore, the analysis was especially 
focused on the assessment of drought severity using three-month SPI for the August, 
September, and October months. 

6.2.5 Satellite Data 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data provide a 
new generation of land resources products to support natural resource management 
and global change research (Didan 2015). MODIS has a moderate spatial (250 m) and 
high temporal (1–2 days) resolution. MODIS data are lumped to produce consistent 
and cloudless 16 daily NDVI product optimum to use for time series analysis such 
as vegetation monitoring. Drought monitoring is one of the many environmental 
concerns for which these products are used (Bajgain et al. 2015, 2017;Gu et al.  2008). 
In this study, the MODIS data were accessed using Google Earth Engine (GEE), 
which is a cloud-based remote sensing platform. The 16-day composite (MOD13Q1)
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MODIS Terra Vegetation Indices product was used to estimate NDVI-based VCI. 
The datasets are available for global coverage at a 250-m spatial resolution from the 
year 2000 onwards. 

6.2.6 Vegetation Condition Index (VCI) 

Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing 
index that gives quantification of quantitative estimation of vegetation growth based 
on surface reflectance. NDVI is calculated as the ratio between the reflectance of 
a red band (0.6–0.7 µm) and a near-infrared (NIR) band (0.7–2.5 µm). The NDVI 
values range from −1 to 1, the responses of healthy vegetation in this range are 
towards one, while water and the built-up area will be represented as negative and 
near-zero values. The NDVI can be estimated using Eq. 6.2. 

NDVI = NIR − Red 
NIR + Red (6.2) 

To normalize current NDVI with respect to maximum and minimum NDVI over 
a single pixel, Kogan (1990) proposed Vegetation Condition Index (VCI). VCI 
compares the current vegetation index to the values observed in a similar period 
over a specific pixel. VCI can be estimated with Eq. 6.3 

VCIi jk  = NDVIi jk  − NDVIi jmin 

NDVIi jmax + NDVIi jmin 
(6.3) 

whereas VCIijk is the VCI value for the pixel i during the month j for year k, 
NDVIijk is the VCI value for the pixel i during the month j for year k, NDVIijk 
min is the multiyear minimum NDVI for i pixel during the month i, and NDVIijk 
max is the multiyear maximum NDVI for i pixel during the month j. The VCI value 
less than 0.4 indicates mild to extreme drought conditions, while VCI above 0.4 
shows normal conditions as shown in Table 6.2. When compared to NDVI, this VCI 
normalizes NDVI responses and removes the long-term ecological indication from 
the short-term climatic signal, proving to be a better index for monitoring water stress 
conditions. 

Table 6.2 VCI classification VCI values Category 

0.0–0.1 Extreme drought 

0.1–0.2 Severe drought 

0.2–0.3 Moderate drought 

0.3–0.4 Mild drought 

0.4–1.0 No drought
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6.3 Results and Discussion 

The long-term rainfall data for 38 years from 1980 to 2017 were analysed to assess 
the average rainfall pattern and variability for five stations Sagar, Damoh, Panna, 
Tikamgarh, and Chhatarpur of the Bundelkhand region of Madhya Pradesh. Rainfall 
statistics of these stations are summarized in Table 6.3. The distribution of monthly 
rainfall of all five stations is shown in Fig. 6.2. 

From Table 6.3, the average annual rainfall in the Bundelkhand region was 
observed to vary between 1202 (Sagar) and 960 (Chhatarpur) with an average of 
1105 mm. The average annual monsoon and non-monsoon rainfall in the region was 
observed as 1008 mm and 97 mm, respectively. The region receives a major portion 
of rainfall during the monsoon season as shown in Fig. 6.2. The rainfall pattern in 
Bundelkhand has a very high temporal variation, the average standard deviation, and 
annual monsoon and non-monsoon rainfall that has been estimated as 336, 320, and 
97 mm. The high values of the coefficient of variation for annual and monsoon rain-
fall 0.31 and 0.32 indicate high rainfall variation. High variation in monsoon rainfall 
is one of the causes of frequent and severe droughts in the Bundelkhand region.

Table 6.3 Rainfall statistics of five stations in the Bundelkhand region (data used 1980–2017) 

No Station 
name 

Annual Monsoon Non-monsoon 

Avg. 
(mm) 

Std. 
dev 

CV Avg. 
(mm) 

Std. 
dev 

CV Avg. 
(mm) 

Std. 
dev 

CV 

1 Sagar 1202 390 0.32 1092 365 0.33 110 76 0.69 

2 Damoh 1207 333 0.28 1114 325 0.29 92 75 0.81 

3 Panna 1174 331 0.28 1074 333 0.31 100 72 0.72 

4 Tikamgarh 960 309 0.32 876 295 0.34 84 84 1.00 

5 Chhatarpur 984 318 0.32 884 282 0.32 100 140 1.40 

Average 1105 336 0.31 1008 320 0.32 97 89 0.92 
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Fig. 6.2 Distribution of monthly rainfall of all stations 
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Table 6.4 Rainfall departure analysis using annual rainfall time series (data used 1980–2017) 

Sr. no. Station name Frequency (%) Return period Drought years 
(deficit less than 
25–50%) 

Severe drought 
years (deficit 
greater than 50%) 

1 Sagar 28.94 1 in 3–4 years 1986, 1988, 1989, 
2002, 2007, 2010, 
2012, 2015, 2017 

1981, 2004 

2 Damoh 21.05 1 in 4–5 years 1989, 1998, 2002, 
2006, 2007, 2014, 
2015, 2017 

– 

3 Panna 18.42 I in 5–6 years 1981, 1985, 2000, 
2006, 2010, 2015, 

2007 

4 Tikamgarh 23.68 1 in 4–5 years 1986, 1991, 2000, 
2006, 2007, 2010, 
2015, 2017 

1989 

5 Chhatarpur 23.68 1 in 4–5 years 1995, 1998, 2000, 
2006, 2007, 2012, 
2014, 2015 

2017 

6.3.1 Rainfall Departure Analysis 

Departure analyses were performed using 38 years of annual rainfall data from the 
year 1981 to 2017. Drought years were identified based on annual rainfall deficit, 
and drought years were classified based on their severity. Drought years of rainfall 
deficit between 25 and 50% were grouped as moderate drought years, and deficits 
of more than 50% were considered severe drought years as shown in Table 6.4. 

From Table 6.4, it has been observed that the drought frequency is very high at all 
five stations; however, drought frequency was observed the highest at Sagar (29.34%), 
Tikamgarh (23.68%), and Chhatarpur (23.68%). Thus, the drought return period is 
very low at these three stations. Most of the stations in Bundelkhand experience a 
very low drought return period, i.e. one drought after every 4 to 5 years. Sagar station 
has a chance of occurring drought year after every 3 to 4 years. From the analysis, 
it can predominantly be seen that the years 2007, 2015, and 2017 were the most 
common and severe drought years at almost all stations in the Bundelkhand region. 
Thus, the dry event probability was typically examined for these widespread and 
severe drought years 2007, 2015, and 2017 for comparison of SPI and VCI. 

6.3.2 Standardized Precipitation Index (SPI) 

As the three-month time step SPI, i.e. SPI-3 is indicative of a meteorological drought 
situation, it has been used as a seasonal drought index to characterize the short-term 
drought and its impact on vegetation. The probability of occurrence of dry events of 
SPI-3 indicates the severity of drought as shown in Table 6.5.
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Table 6.5 Probability of occurrence of three-month SPI in Bundelkhand 

Sr. no. Severity Probability of occurrence of three-month SPI (%) 

Chhatarpur Damoh Panna Sagar Tikamgarh 

1 Extremely wet 1.77 2.65 3.03 4.00 2.56 

2 Severely wet 5.96 4.87 4.55 3.06 5.12 

3 Moderately wet 9.05 11.50 8.44 8.71 7.68 

4 Near normal 74.61 71.46 70.35 70.12 78.25 

5 Moderate dry 5.74 7.52 10.17 8.94 2.77 

6 Severely dry 1.99 1.33 2.60 4.00 2.13 

7 Extremely dry 0.88 0.66 0.87 1.18 1.49 

The analysis of Table 6.5 shows the probability of occurrence of dry events of 
SPI-3 at all five stations of the Bundelkhand region. It is broadly seen that the 
probability of occurrence of moderate dry situation is high at Panna, Sagar, and 
Damoh with the probability of occurrence at 10.17, 8.94, and 7.52%, respectively. 
The probability of occurrence of severe drought events has been observed high at 
Sagar, Panna, and Tikamgarh. The probability of extremely dry events was also 
seen as high at Tikamgarh and Sagar with the probability of occurrence at 1.49 and 
1.18%, respectively. From the overall analysis, it can be seen that the probability of 
occurrence of severe and extremely dry events is very high at Sagar and Tikamgarh 
stations. Though the Sagar station receives a good amount of rainfall as compared 
to other stations, Tikamgarh station has also shown a high probability of severe and 
extreme events. From the rainfall departure analysis, the years 2007, 2015, and 2017 
were identified as severe dry years for which further analysis of SPI and VCI has 
been performed. The SPI-3 severity values of the monsoon months for severe and 
widespread drought years 2007, 2015, and 2017 in the Bundelkhand region are given 
in Table 6.6. 

Table 6.6 SPI-3 values for monsoon months of drought years 2007, 2015 and 2017 

Months Sagar Damoh Panna Tikamgarh Chhatarpur 

Aug-07 −1.26 −0.79 −2.05 −2.18 −2.01 

Sep-07 −2.22 −0.87 −2.04 −2.28 −1.77 

Oct-07 −1.31 −0.65 −1.61 −1.44 −1.15 

Aug-15 −0.64 −0.78 −1.29 −0.73 −0.58 

Sep-15 −0.89 −1.34 −1.69 −1.12 −1.46 

Oct-15 −1.12 −1.45 −0.79 −1.79 

Aug-17 −0.80 −1.41 0.15 −0.69 −1.45 

Sep-17 −0.57 −1.47 −0.05 −1.43 −1.64 

Oct-17 −0.78 −2.09 −0.93 −1.87 −1.80
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6.3.3 Vegetation Condition Index (VCI) Analysis 

To monitor drought from a long-term space-based observation, the VCI derived 
from NDVI is used in the study. The spatial extent and temporal change of VCI in 
the study area in August, September, and October for the years 2007, 2015, and 2017 
are shown in Fig. 6.3. First of all, the VCI is classified into five classes from extreme 
drought to no drought and then the percentage of the area falling in each class in the 
Bundelkhand region is calculated and is given in Table 6.7. 

From the analysis of Fig. 6.3 and Table 6.7, the extent and onset of drought events 
can be detected from the VCI maps of successive fortnights of the three driest years 
2007, 2015, and 2017. Severe vegetation stress is evident all over the area during 
the last fortnight of October 2015. The situation was seen as normal in August 2015 
in Bundelkhand, where the majority of the area was under no-drought conditions. 
The drought situation started worsening after the first fortnight of August 2015. 
By the end of October 2015, around 27.5%, 24.7%, and 13.5% area of the region 
were found under extreme, severe, and moderate stress conditions, respectively. A 
similar progression of drought situation from August to October has been seen in the 
years 2007 and 2017 in the whole region. Some exception was seen in the middle of 
September 2007, when more area was under drought as compared to October 2007 
especially in the southern part of the Bundelkhand region. From the overlaying of 
VCI maps, it is observed that the Sagar and Tikamgarh districts of the study area are 
prone to water stress and severe drought. In a comparison of the dry periods identified

Fig. 6.3 Fortnightly spatiotemporal variation of vegetation condition index (VCI) for the years 
2007, 2015, and 2017 (low VCI value indicates drought severity)
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Table 6.7 Area in percentage under different VCI classes in Bundelkhand 

Dates Extreme drought Severe drought Moderate 
drought 

Mild drought No drought 

13/8/2007 3.63 3.41 4.92 6.72 81.32 

29/8/2007 0.20 0.36 0.72 1.46 97.26 

14/9/2007 0.72 0.51 1.39 2.84 94.55 

30/9/2007 7.01 9.13 11.52 11.98 60.37 

16/10/2007 10.16 10.12 13.44 15.34 50.95 

13/8/2015 0.91 1.32 2.14 3.20 92.43 

29/8/2015 0.03 0.12 0.41 1.29 98.14 

14/9/2015 0.59 2.95 6.98 11.39 78.09 

30/9/2015 18.66 11.92 13.85 14.63 40.95 

16/10/2015 27.52 24.86 21.74 13.55 12.33 

13/8/2017 1.57 1.87 2.73 3.75 90.08 

29/8/2017 0.07 0.14 0.34 0.84 98.61 

14/9/2017 0.20 0.70 2.18 5.19 91.74 

30/9/2017 1.16 2.97 6.32 10.64 78.91 

16/102017 5.77 8.81 11.58 13.51 60.32

using SPI and water stress conditions identified using VCI, it is observed that both 
indices are showing droughts almost at the same period and with the same severity. 
VCI analysis of all the three severe drought years indicated the increase in the spatial 
extent of drought from August to September especially in the Sagar and Tikamgarh 
districts which are quite relatable and in agreement with the results derived from the 
SPI-3. The present study justifies the advantage of satellite-based data for identifying 
the spatial and temporal extent of vegetation stress and prevailing drought situation 
in the larger area with ease. 

6.4 Conclusions 

The present study examined the spatial and temporal extent of drought over five 
districts like Sagar, Damoh, Panna, Tikamgarh, and Chhatarpur of the Bundelkhand 
region in the Madhya Pradesh state of India using the annual rainfall departure 
analysis and a combination of station-based rainfall drought severity index (SPI) and 
remote sensing-based index (VCI). The annual rainfall departure analysis revealed a 
high frequency of droughts at most stations in the region, with one drought occurring 
every 4 to 5 years. Years 2007, 2015, and 2017 were identified as the severe drought 
years which had a wide coverage over the region and were common in all the five 
districts, and further analysis for comparison between SPI and VCI was carried out 
for those years. SPI-3 values were estimated for all five stations using the long-term
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monthly rainfall data. Analysis of SPI-3 shows that, though the Sagar station receives 
a good amount of annual rainfall as compared to other stations, the probability of 
severely and extremely dry events is very high at this station. Tikamgarh station has 
also shown a high probability of severe and extreme events. The results of SPI-3 
were further analysed for the August, September, and October months of dry years 
2007, 2015, and 2017. VCI is estimated for August to October of dry years using 
the MODIS long-term fortnightly NDVI data. The VCI analysis during all the three 
severe drought years indicated an increase in the spatial extent of drought from August 
to October at all stations of the region and August to September especially at Sagar 
and Tikamgarh. Similar temporal and spatial pattern of drought severity has also 
been interpreted through SPI-3. The present study justifies the advantage of satellite-
based data for identifying the spatial and temporal extent of vegetation stress-related 
drought. The study can be extended further by linking data on crop production with 
SPI and VCI for drought and wet years; it can be helpful to quantify the economic 
impact of droughts. The VCI findings may be influenced by inaccuracies in optical 
satellite data caused by cloud cover, which causes a shift in the real reflectance 
from ground objects. The remotely sensed data serve as input for the identification, 
monitoring, and assessment of the drought. The NDVI is one of the most useful and 
well-accepted remote sensing indices to assess vegetation stress conditions to be then 
correlated with agriculture and other droughts. Conclusively, it can be said that the 
onset and progression of drought can be monitored with the application of station-
based and satellite-based data, which will certainly help the various stakeholders to 
take necessary disaster management decisions. 
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Chapter 7 
Determining the Yield of Rice Using 
the Leaf Area Index (LAI) in Iran 

Hamid Rahimi, Shahnaz Karami Sorkhalije, and Hajar Marabi 

Abstract Most of Iran’s rice production is cultivated in the north zone of the 
country and also a strategic crop for Iranians. The per capita consumption of rice 
is 35 kg/person. Therefore, knowledge about the characteristics of rice and partic-
ularly, yield is very important. One of the most important indicators to determine 
the growth period and yield of rice is the leaf area index (LAI). In this study, the 
LAI index obtained from the MCD15A2H product of MODIS was used to border 
rice cultivation areas and to obtain yield estimates. According to previous studies 
of famous Iranian rice (Shiroodi, Kados, Hashemi and Deylamani) cultivars in rela-
tion to leaf area index (obtained from ground measurements) and the number of 
fertile tillers, which has been calculated significantly and positively. In this study, 
the equation for estimating rice yield was generated. The yield estimation equation 
was tested in 22,107 rice fields with an area of 90,350 ha. The estimated yield results 
were compared with the actual rice yield cultivars. In 2018–2019, the real average 
yield of rice in the country was 4539 kg/ha, and the result of the estimated yield was 
4794 kg/ha. The average error in the country was 908.85 kg/ha. 
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7.1 Rice Cultivation in Iran 

Rice is an annual plant of the cereal family that grows in warm and humid areas of 
equatorial or temperate climates. The appearance of rice is shown in Fig. 7.1. Cold  
and water scarcity are limiting factors for rice growth. In Iran, favorable areas for 
rice growth range from north to south in the country, but most of the cultivation area 
of this crop is native to the country (Mazandaran and Guilan), have a special water. 

In the time of Anoushirvan, Borzoyeh Tabib brought rice to India. Rice was 
common in Guilan since the late Sassanids and was the predominant source of people. 
From the Seleucid period, especially the Parthians, in the area now called the Guilan 
Plain, especially in the east of Sefidrood, human settlement became embryonic and in 
the late Sassanid period led to the establishment of a more efficient economic system, 
namely agricultural production (rice cultivation). The way of life of the Guilanis until 
the end of the Sassani period was based on raising livestock, hunting and gathering 
forest products (Porhadi 2010).

Fig. 7.1 Rice morphology (Erfanimoqada et al. 2018) 
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7.2 Types of Rice Cultivation in Iran 

The primary center of rice cultivation in Iran has been Guilan province since ancient 
times. Guilani rice cultivars are about 100 species and they are classified into three 
categories in terms of height and shortness: Long grain group which is mainly known 
as “Sadri,” medium grain group which is known as “anonymous” and short grain 
group of “Champa” species. Over the centuries, rice cultivars have changed and it is 
not possible to say exactly which of the remaining cultivars are the original one. The 
trend of these changes has accelerated since the 1940s. Today, the planting of most 
native cultivars that had a high area under cultivation in the past has been reduced 
and has been removed from the Guilani agriculture category (ISNA 2018). 

From 1978 to 2013, the area under cultivation of crops in Iran has increased from 
9.5 million hectares to 12.2 million hectares (National Rice Research Institute of Iran 
(NRRI) 2021). The amount of crops in Iran in 2019 is reported to be approximately 
83 million tons. Out of a total of more than 892 thousand hectares of rice cultivation 
area, approximately 4.4 million tons have been harvested. Rice yield in Iran for this 
calculation period is 4.97 tons per hectare (Ahmadi 2019). In different parts of the 
Iran, rice is planted in two ways: transplanting and direct seeding. Cultivation of 
rice by transplanting method is more common than direct seeding method and its 
production is higher in Iran (Razzaghi and Abyar 2020). 

7.2.1 The Method of Transplanting 

In this method, seeds are first planted in a plot of land inside or outside the field, 
which is called a treasury. There are two types of treasuries: 

I. Traditional Treasury: The traditional treasury has an indefinite length and width 
and is generally large. Due to their size, leveling and troweling, these vaults are 
not well maintained and as a result, it is not possible to drain water easily. Water 
logging causes seeds and seedlings to rot. Work with a better farmer: How to get 
rice in a paddy field. Due to flooding, it is attacked by houseflies and not covering 
with nylon led the plant to freeze due to spring frosts. Sometimes farmers have 
to sow twice. The amount of seeds used in the traditional treasury is more than 
the station treasury. 

II. Station Treasury: It is an atmospheric reservoir and a ridge whose length varies 
according to the slope of the earth and its maximum length is 15 m and its width 
is about 1.2 m and the distance between the plots is about 30 cm. The height of the 
plots is about 10–15 cm above the field level. Most of the necessary moisture is 
provided by water leaks, which do not require irrigation and flooding. In the last 
days of the treasury, the treasury should be flooded to facilitate digging. These 
types of vaults have many advantages over traditional vaults. These advantages 
include lack of hydration, non-contamination of the housefly, adequate oxygen 
supply to the roots, ease of control and care and ease of use of nylon to cover
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the nursery. To nylon the cupboard, long sticks and nails should be installed in 
an arched shape on both sides of the plot and then the nylon should be pulled on 
it. The use of nylon in the treasury is to prevent damage from the spring cold. 
Sowing in treasury with nylon cover in some years until early May. The nylon 
cover ensures that the plant does not die from the cold and continues to grow and 
develop. To prevent the nylon cover from overheating, some or all of the nylons 
are removed in the morning on hot, sunny days. The most suitable temperature 
for plant growth and development in the nursery at different stages of growth is: 

i. Sowing for the first 5 days, maximum day temperature is 30–32 ºC and 
night 20–25 ºC. 

ii. From 6 to 15 days after sowing, the daytime temperature is 20–25 ºC and 
at night 15–20 ºC. 

iii. From 15 to 20 days after sowing, the temperature of the day is 20 ºC and at 
night 12–15 ºC. 

In addition, in order to adapt the plant to the atmospheric conditions at the time 
of transplanting, it is necessary to remove the nylon 5–7 days before transplanting 
so that the plant adapts to the environmental conditions and is not damaged after 
transplanting (Keshtiar 2020). Pictures of these three cultures can be seen in Fig. 7.2. 

Fig. 7.2 (Top Left) Station treasury, (Top Right) The method of transplanting, (Bottom) Traditional 
treasury
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7.2.2 Direct Seeding Method 

Studies show that the most important issues and problems of direct cultivation are the 
lack of leveling of lands and overgrowth of weeds and thus control and control. Local 
tall cultivars are not suitable for direct cultivation because they cultivate; therefore, 
dwarf cultivars are suitable for direct cultivation. To succeed in direct cultivation, 
first of all, the lands must be completely leveled, and thus the use of dwarf cultivars, 
suitable herbicides and sufficient fertilizer can be a good performance. 

Before sowing, water of the field should be taken out and then sowing should be 
done and after 5–6 h, irrigation should be done so that the seeds are well placed in 
the soil of the nursery. The amount of seed consumed per hectare is 70–75 kg in 
germination (Keshtiar 2020). Pictures of these three cultures can be seen in Fig. 7.3. 

Fig. 7.3 Direct seeding method
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7.3 Rice Yield Remote Estimation Indices 

Many remote sensing indices have been used to estimate rice crop yield. But there 
is one thing in common between them all. All indicators have a local or regional 
application and cannot be used for throughout of the world. 

Various indicators such as EVI, NDVI, LAI, DVI, SAVI, GVI, RDVI and TSAVI 
have been used to monitor the condition and performance of rice or any crops. But 
they all apply at the regional extent (Aase and Siddoway 1981; Aboelghar et al. 2011; 
Ahlrichs and Bauer 1983; Crist 1984; Daughtry et al. 1980; Groten  1993; Hatfield 
1983; Hinzman et al. 1986; Holben et al. 1980; Nemani and Running 1989; Sharma 
et al. 1993; Shrestha and Naikaset 2003; Teng 1990; Tucker 1979; Wiegand and 
Richardson 1990; Wiegand et al. 1990). Some of these indicators are listed in Table 
7.1 with their specific equations. 

Most of these indicators are the result of spectral calculations of satellites and 
sensors such as Landsat 4, 5, 7 and 8, Sentinel 2 and 3, SPOT and MODIS. The 
determination of relationships is also determined by the digits R2 or the correlation 
coefficient.

Table 7.1 Vegetation indices used for rice yield estimation 

Vegetation index Formula References 

Normalized 
difference vegetation 
index 

NDVI = NIR−Red 
NIR+Red Tucker et al. (1981) 

Enhanced vegetation 
index 

EVI = 2.5 × (NIR−Red) 
(NIR+6×Red−7.5×Blue+1) Huete et al. (2002) 

Leaf area index LAI = 3.618 × EVI − 0.118 Boegh et al. (2002) 

Soil adjusted 
vegetation index 

SAVI = 1.5×(NIR−Red) 
(NIR+Red+0.5) Huete (1988) 

Green vegetation 
index 

GVI = (−0.29 × TM_1) + (−0.24 × TM_2) 

+ (−0.54 × TM_3) + (−0.72 × TM_4) 

+ (−0.08 × TM_5) + (−0.18 × TM_6) 

Kauth et al. (1976) 

Renormalized 
difference vegetation 
index 

RDVI = NIR−Red √
NIR+Red 

Roujean and Breon 
(1995) 

Transformed soil 
adjusted vegetation 
index 

TSAVI = s(NIR−s∗Red−a) 
a∗NIR+Red−a∗s+X∗(1+s2) 

s = the soil line slope 
a = the soil line intercept 
X = an adjustment factor that is set to minimize 
soil noise 

Baret et al. (1989) 

Difference 
vegetation index 

DVI = NIR − Red Tucker (1979) 

Greenness index GI = Green−Red 
Green+Red Wiegand et al. 

(1989) 
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7.4 Leaf Area Index 

The leaf area index (LAI) can be calculated in two direct ways and distance. Here 
are remote sensing methods. Leaf area index is an important structural property of a 
plant canopy. It is a bio-physical variable influencing land surface processes such as 
photosynthesis, transpiration and energy balance. LAI is a required input for various 
agricultural models. LAI is defined as the projected area of leaves per unit of ground 
area. The amount of leaves in the canopy is a factor in determining the amount of 
light intercepted by the canopy, which in turn controls photosynthetic rates. Leaves 
contain pores, called stomata, through which carbon dioxide and water pass between 
the plant and the atmosphere. So the leaf area also sets limits on transpiration and 
photosynthesis. For different vegetation types, LAI can vary from less than 1 for 
deserts to over 6–8 for rain forests. There are a variety of methods for measuring 
LAI. 

The most straightforward, usually used in herbaceous or grassy canopies, is to 
simply define an area on the ground, clip off all the leaves, and measure their area. 
Dividing the total area of all leaves by the ground area gives LAI (Zand and Matinfar 
2012). 

The concept of leaf area index, which is a range of zero to generally, in this way, 
which is the hypothetical number of a leafed leaf in a pixel of 10 × 10 sentinel 2 
satellite a completely leafy layer in that pixel makes. Similarly, the amount of 6, 6 
times in the pixel of the leaves, can cover the ground (Rahimi 2021). A schematic of 
detecting leaf area is shown in Fig. 7.4.

There are many equations for calculating the leaf area that points to some of 
them. There are many equations for calculating leaf area index. By this, we mean 
only distance equations. Main goal is not to examine this index, but we will mention 
some of them. A number of common equations for this index are given in Table 7.2.

7.5 Detection of Rice Crop by Remote Sensing Method 

There are two general walks to detect rice crop by remote sensing method using 
satellite imagery such as MODIS, Landsat 8 or Sentinel 2. One supervised and 
unsupervised. The most important methods are supervised by K-mean and ISODATA. 

7.5.1 Unsupervised Classification

• The ISODATA algorithm has some further refinements by splitting and merging 
of clusters than other algorithms. Clusters are merged if either number of members 
in a cluster is less than a certain threshold or if centers of two clusters are closer 
than a certain threshold. Clusters are split into two different clusters if the cluster
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Fig. 7.4 Schematic view of the concept of leaf area index (Rahimi 2021)

Table 7.2 Some equations of the leaf area index (LAI) 

Index name Reference Equation 

Specific leaf area 
vegetation index 

Lymburner et al. 
(2000) 

NIR/(Red + SWIR) 

Leaf area index Boegh et al. (2002) 3.618 × EVI − 0.118 
Sensed leaf area 
index 

Zand and Matinfar 
(2012) 

1.035 × LN(NDVI) + 2.05 

Mix leaf area 
index 

Sentinel Hub Custom 
Scripts (2020) 

((
NIR 

(Red+SWIR(1613.7)) 

) 
+ 

(
NIR 

(Red+SWIR(2202.4)) 

)) 
/2

standard deviation exceeds a predefined value and the number of members is 
twice the threshold for minimum number of members. In ISODATA clustering 
algorithm, clusters will be merged if either the number of members in a cluster 
is less than a certain threshold or if the centers of two clusters are closer than a 
certain threshold. Meanwhile, clusters can also split into two different clusters if 
cluster standard deviation exceeds a predefined value and the number of members 
is twice the threshold for minimum number of members (Ma et al. 2011).

• K-means unsupervised classification calculates initial class means evenly 
distributed in the data space then iteratively clusters the pixels into the nearest 
class using a minimum distance technique. Each iteration recalculates class means 
and reclassifies pixels with respect to the new means. All pixels are classified to
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the nearest class unless a standard deviation or distance threshold is specified, 
in which case some pixels may be unclassified if they do not meet the selected 
criteria. This process continues until number of pixels in each class changes by 
less than selected pixel change threshold or the maximum number of iterations is 
reached (Tou and Gonzalez 1974). 

The most widely supervised methods include the following: 

7.5.2 Supervised Classification 

• The adaptive coherence estimator (ACE) estimates the squared cosine of the angle 
between a known target vector and a sample vector in a transformed coordinate 
space. The space is transformed according to an estimation of the background 
statistics, which directly effects the performance of the statistic as a target detector. 
ACE assumes that a target data sample can be modeled as a linear combination 
of a known target signature and random Gaussian noise. ACE uses an estimate 
of the background mean and background covariance to transform the coordinate 
space before comparing a known target vector to a data sample. Appropriate 
background estimation is very important for ACE’s performance as a detection 
statistic. ACE assumes that background points can be modeled as a multivariate 
random Gaussian distribution, parameterized by a mean and covariance. In the 
simplest case, an entire dataset or representative subset is processed at once to 
generate an estimate of the mean and covariance. This estimate is then used for 
the entire dataset or subset that ACE is computed on (Alvey et al. 2016). 

• The binary encoding classification technique encodes the data and endmember 
spectra into zero’s and ones, based on whether a band falls below or above the 
spectrum mean, respectively. An exclusive or function compares each encoded 
reference spectrum with the encoded data spectra and produces a classification 
image. All pixels are classified to the endmember with the greatest number of 
bands that match, unless you specify a minimum match threshold, in which case 
some pixels may be unclassified if they do not meet the criteria (Mazer et al. 
1988). 

• The CEM method designs a finite-impulse response (FIR) filter that minimizes the 
average output energy, while constraining the response of the target to a specific 
value. The whole process can be considered as a convex optimization problem 
subject to an equality constraint. CEM can only detect one target at a time (Zhu 
et al. 2020). 

• Mahalanobis distance is that best fits a particular measurement is based on a 
statistical quantity developed by Mahalanobis (1936). The dimensionless “Maha-
lanobis distance” is a measure of how far a particular measurement is from the 
centroid of a reference cluster. A particularly useful property of the Mahalanobis 
distance (MD) is that there is no limit to the number of variables that can be used 
to evaluate it (Hamill et al. 2016). Combining this method with ROIs has a very 
high accuracy in supervised classification.
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• Maximum likelihood classification (MLC) is a supervised statistical classification 
approach in which class signatures are assumed to have normal distributions. The 
MLC pixel-based method works on the basis of multivariate probability density 
function of classes (Lillesand et al. 2015). Pixels are assigned to the class which 
has maximum likelihood, so it is important to select training samples in such 
a manner that each training class follows a Gaussian distribution (Mishra et al. 
2017). 

• In minimum distance algorithm, to find a mean value of pixels of training sets in 
n-dimensional space. All pixels in image classified according to the class mean 
to which they are closest. It is one of a simple algorithm, and the use of a training 
set of a class is represented as a center point based on the information about the 
average of all pixels of sample class. This method calculates the mean vector for 
each class, calculate the statistical (Euclidean) distance from each pixel to class 
mean vector and assign each pixel to the class it is closed. The minimum distance 
is calculated by using the Euclidean distance measurement. The class mean with 
the minimum distance with the pixel will be assigned as the class of the pixel 
(Abinaya and Poonkuntran 2019). 

• Artificial neural network (ANN) is an empirical modeling tool that has an ability 
to identify underlying highly complex relationship from input/output data only 
(Aqil et al. 2006). ANN is tools for building models from data. Simulating the 
function of the human nervous system, they are essentially an applied mathe-
matical technique, bearing a related biological terminology. They can be imple-
mented whenever there is a vague or even unknown relationship between input 
and output data, though there is an adequate supply of data illustrating this rela-
tionship. Artificial neural networks are supposed to be able to handle complex 
multivariate relationships, non-deterministic or nonlinear problems, even enter 
the field of fuzzy logic. In addition, they offer fast speed of analysis, objective 
viewpoints, the ability to generalize and to extrapolate beyond initial data range 
and provide rather simple and quick update processes hidden behind complicated 
in most cases algorithms which undertake the role of their theoretical settings. 
Thus, they have already been used for forecasting as well as for other predic-
tive and classifying tasks. This survey revises the recent use of ANNs in the 
environmental sector, especially for landscape applications, provides their math-
ematical theoretical base and derives conclusions relating to their potential as a 
modern land cover and land use modeling and pattern classification tool (Glezakos 
and Tsiligiridis 2002). Artificial neural networks have considerable potential for 
the classification of remotely sensed data. Multi-layer feed forward (MLFF) and 
radial basis function (RBF) NN classification techniques are widely used remote 
sensing applications. Remotely sensed images are attractive sources for extracting 
land cover information, where an image classification algorithm is employed to 
retrieve land cover information. Artificial neural network (ANN) technique has 
the ability to identify a relationship from given patterns and this makes it possible 
for ANNs to solve large-scale complex problems such as pattern recognition, 
nonlinear modeling, classification and association. (Ndehedehe et al. 2013).
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• The idea of the orthogonal subspace projection (OSP) classifier is to eliminate all 
unwanted or undesired spectral signatures (background) within a pixel, then use 
a matched filter to extract the desired spectral signature (endmember)present in 
that pixel. To start with, we formulate the problem at hand. In hyperspectral image 
analysis, the spatial coverage of each pixel, more often than not, may encompass 
several different materials. Such a pixel is called a “mixed” pixel. It contains 
multiple spectral signatures (Ientilucci 2001). A combination of these operators 
into an overall OSP classification operator reduces the non-Gaussian detection 
and classification problem presented by mixed pixels to the solved problem of 
detecting an unknown constant in white noise (Harsanyi and Chang 1994). 

• The parallelepiped classifier is one of the widely used supervised classification 
algorithms for multispectral images. The threshold of each spectral (class) signa-
ture is defined in the training data, which is to determine whether a given pixel 
within the class or not (Zand and Matinfar 2012). The parallelepiped classifier 
uses a simple decision rule, which is to find the upper and lower brightness values 
in each spectral dimension. Making use of the histograms of the individual spec-
tral components in the available training data would be the most obvious solution 
to find these boundaries. For each class, a multidimensional box or parallel piped 
is formed. If an unknown pixel lies in between this box, it is assigned to that class 
(Walton 2015). 

• Spectral angle mapper (SAM) is a physically based spectral classification that 
uses an n-D angle to match pixels to reference spectra. The algorithm determines 
the spectral similarity between two spectra by calculating the angle between the 
spectra and treating them as vectors in a space with dimensionality equal to the 
number of bands. This technique, when used on calibrated reflectance data, is 
relatively insensitive to illumination and albedo effects. Endmember spectra used 
by SAM can come from ASCII files or spectral libraries, or you can extract 
them directly from an image (as ROI average spectra). SAM compares the angle 
between the endmember spectrum vector and each pixel vector in n-D space. 
Smaller angles represent closer matches to the reference spectrum. Pixels further 
away than the specified maximum angle threshold in radians are not classified. 
SAM classification assumes reflectance data. However, if you use radiance data, 
the error is generally not significant because the origin is still near zero (Kruse 
et al. 1993). 

• Spectral information divergence (SID) is a spectral classification method that uses 
a divergence measure to match pixels to reference spectra. The smaller the diver-
gence, the more likely the pixels are similar. Pixels with a measurement greater 
than the specified maximum divergence threshold are not classified. Endmember 
spectra used by SID can come from ASCII files or spectral libraries, or you can 
extract them directly from an image (as ROI average spectra) (Du et al. 2004). 

• The most commonly used model for analyzing satellite imagery is the support 
vector machine (SVM) (Kranjčić et al.  2019). SVM is based on statistical learning 
theory and have the aim of determining the location of decision boundaries that 
produce the optimal separation of classes. In the case of a two-class pattern recog-
nition problem in which the classes are linearly separable, the SVM selects from



134 H. Rahimi et al.

among the infinite number of linear decision boundaries the one that minimizes 
the generalization error. Thus, the selected decision boundary will be one that 
leaves the greatest margin between the two classes, where margin is defined as 
the sum of the distances to the hyperplane from the closest points of the two classes 
(Vapnik Vladimir 1995). Strategy for multiclass classification. SVM includes a 
penalty parameter that allows a certain degree of misclassification, which is partic-
ularly important for non-separable training sets. The penalty parameter controls 
the trade-off between allowing training errors and forcing rigid margins. It creates 
a soft margin that permits some misclassifications, such as it allows some training 
points on the wrong side of the hyperplane. Increasing the value of the penalty 
parameter increases the cost of misclassifying points and forces the creation of a 
more accurate model that may not generalize well (Chan and Lin 2001; Hsu et al. 
2010; Wu et al.  2004). 

But what is the difference between the unexpected and monitored method? The 
answer to this question is that in the unsupervised classification, the reliance on two 
principles of the number of classes and the statistical gap between the data. 

The main difference between the two methods of monitoring and monitored clas-
sification is the use of samples. The number of these samples is more than more, 
and the normal spatial distribution is more classified. The satellite image can also 
be only one band or a combination of different gangs or all existing satellite bands. 
A better type of initial data that increases the work accuracy is the leaf area index. 
If we calculate the same leaf area index for each satellite image and combine all 
these layers, finally, we will have a compound layer. On the other hand, if we have a 
satellite image for the area, we have a total of 50–52 satellite imagery. The weekly 
diagram of each pixel represents the leaf area index of rice crop in throughout the 
year. This graph shows the initial growth process, maximum growth and rice harvest 
period as a curved line. The horizontal length below the curve represents the length 
of the growth period. In contrast, vertical growth and area below the curve represent 
health and the potential of rice growth. The concept of the sample and the curve of 
changes in leaf area index during the year are shown in Fig. 7.5.

The SVM method is one of the best methods that uses point, linear and area 
samples (Region Of Interest: ROI) that are among the requirements for diagnosis 
and classification. But there is not always a need for time coordination between 
satellite images and the required ROIs. In this sense, if the rice crop is detected 
by one-year ROIs with very high accuracy and on the other hand has a very small 
number and distribution in the study area, a spectral signature is obtained for the rice 
detection pixels. This signature is the result of the behavior of the rice crop in the 
confirmed cultivated pixel of rice. The ups and downs of this graph will be the LAI 
value on the Y axis and will show the date on the X axis. The average of thousands 
or even millions of pixels of a definite sample of rice is presented in the form of a 
validated curve called the rice spectral signature. 

To determine the rice cultivation lands, 22,107 lands with an area of 90,350 ha, 
in all of which rice was cultivated simultaneously, were given as an ROI to the 
SVM model. MODIS (MCD15A2H product) and Sentinel 2 images were used to
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Fig. 7.5 LAI of rice crop in  
Someh-Sara, Guilan, Iran 
(2019–2020) Sentinel 2 
image (Sentinel Hub EO 
Browser 2021)

determine LAI. In this large project, ROIs of rice crop year (from September 2018 to 
September 2019) were used simultaneously. The Google Earth Engine (GEE) system 
was used to perform routine steps such as masking, cloud removal and geometric 
errors. After model training for rice detection, 5000 real rice fields were used to 
assess the accuracy of the diagnosis. Spatial correlation 0.85 and kappa coefficient 
0.9 indicate the excellent detection quality of the model in determining rice cultivated 
areas in Iran. The estimated rice cultivation lands obtained from the model are shown 
in Fig. 7.6, by provinces of Iran.

7.6 Determining Rice Yield 

The default for rice yield estimation is ground measurement and monitoring of rice 
yield during the crop year. Rice yield estimation basis is a successful project based 
on rice yield estimation and monitoring based on leaf area index. 

According to previous studies of famous Iranian rice (Shiroodi, Kados, Hashemi 
and Deylamani) cultivars in relation to leaf area index (obtained from ground 
measurements) and the number of fertile tillers, which has been calculated signifi-
cantly and positively. Considering that the average yield of rice plant is 5579.1 kg/ha 
and the average tiller of this plant is 15.32 m2. Therefore, 0.036 kg/m2 is harvested
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Fig. 7.6 Rice cultivation detection of Iran (2018–2019) (IAMIMC 2021)

per square meter (Mohammadi et al. 2011). This value is considered as a constant 
coefficient of harvest. On the other hand, the correlation coefficient of the number 
of tillers to the LAI is 1716.646. This coefficient is considered as a communication 
constant. Therefore, the final equation for estimating the yield of rice is as follows: 

RiceYield = 1716.646 × LAImax 

In this equation, LAImax is the maximum value observed during the cultivation 
period. This value shows at the peak of the LAI growth curve. The final result is in 
kilograms per hectare (Rahimi 2021). 

7.7 Results Evaluation of Rice Yield 

To evaluate the accuracy of the results of this method, real return data of all provinces 
of Iran was received from Jihad-e-Agriculture Organization. The slight average 
difference between the observed data and the estimated data indicates the accuracy 
of the model under study. In the 2018–2019 crop year, the eight provinces of Iran 
cultivated rice. The actual return statistics of the provinces were compared against
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Table 7.3 Evaluation of the accuracy of the estimated yield of the model against actual rice yield 
data in Iran (2018–2019) (National Rice Research Institute of Iran (NRRI) 2021) 

Province Actual yield Estimate yield 
(Kg/H) 

Absolute error 
(Kg/H) 

RMSE MAE 

Ardebil 3465 4662 1196.863 1289.613 1000.22 

Esfahan 5624 4528 1096.069 1116.809 1071.9 

Khozestan 4286 4156 129.6175 191.36 119.34 

Zanjan 3778 4184 406.3775 550.11 372.1 

Fars 4349 5320 971.4013 1072.33 929.166 

Kohgiloieh and 
Boierahmad 

4452 3340 1112.344 1181.05 1012.01 

Guilan 4481 6561 2079.181 2132.11 1981.21 

Mazandaran 5879 5600 278.9772 382.5 204.31 

Mean of Iran 4539.25 4793.875 908.8538 989.4853 836.282 

the estimated return. This study was conducted in 814,380 ha of rice cultivated lands 
in Iran. The lowest average error in Mazandaran province was 279 kg/ha, and the 
highest error in Guilan province was 2079 kg/ha. The average error of all cultivated 
lands was 909 kg/ha. This is a very good number for 814,380 ha of rice cultivated 
land (National Rice Research Institute of Iran (NRRI) 2021). A summary of the 
evaluation of the results is reported in Table 7.3. 

7.8 Discussion and Conclusion 

For a long time, the northern region of Iran has been the origin of rice cultivation in 
Iran. This situation is due to the climate, soil and abundant water resources of this 
area. Precipitation in this area starts from 2800 mm from the west and continues up to 
900 mm in the eastern. But in recent decades, rice cultivation is also cultivated in the 
northwestern, western and southwestern parts in Iran due to increasing consumption. 
But for some reason, they still do not have the popularity and quality of rice in the 
northern region. The good taste and aroma of rice in the northern region are very 
different from other parts of the country. Hashemi, Shiroodi, Tarom and smoky rice 
brands are widely used in restaurants and homes in Iran. But in the discussion of rice 
performance, Hashemi, Kadous, Shiroodi and Dilmani varieties are considered as 
high-yielding varieties. In the present study, the same famous varieties were used as 
the criterion for decision. The results of the study indicate a good relationship between 
leaf area index and the probable yield, but important points should be considered in 
this regard.
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With these descriptions, it can be concluded that by accessing the library of agri-
cultural crops, the type of plants can be determined by remote sensing for the past 
and future years. The cultivation classification and detection models used in satellite 
imagery have the ability to identify the type of plants with high accuracy. But there 
are important challenges along the way: 

• If the number of samples is more, the accuracy of diagnosis will be higher. 
• If the spatial distribution of the samples is equal and balanced, the accuracy of 

detection will be less error. 
• If we have samples for all plants, the accuracy of diagnosis will be higher. 
• If the sample area is large, the exact pixel is easily obtained. 
• If the image resolution is high, we do not have the problem of reducing the pixel 

accuracy. 
• If the image bands are more, a more accurate spectral signature is obtained. 
• If we have accurate information about the time of planting and harvesting plants, 

the error of diagnosis will be less. 
• If the time interval of the images is less, a more accurate spectral signature is 

drawn. 
• Detection operations should be performed in homogeneous areas. 
• Spectral signature of a plant is not applicable in every region. 
• If the cloudiness and technical errors of satellite images are reduced, the number 

of images available will increase. 

A summary of all the necessary steps to identify rice fields and estimate the annual 
yield of this product using satellite images is shown in Fig. 7.7.

Finally, it can be concluded that it can be used with almost any satellite image 
(any type of sensor such as MODIS, Sentinel, Landsat, etc.). High resolution is 
recommended. The best tool for all processes is a tool that is compatible with cloud 
computing capabilities. One of these tools is Google Earth Engine. This system is 
both free, accessible and very powerful. The biggest challenge in this mission is to 
have a lot of actual information from the cropland. It should never be forgotten that 
for the design of a spectral library of rice (or any other crop), the homogeneity of the 
place of cultivation should be considered. In a way, the spectral signature of an area 
like Mazandaran in Iran is very different from the area of Lorestan or Fars. Therefore, 
homogeneous parts should be considered as the border of the mask, in order to mini-
mize the detection error of the rice crop. There are different methods for estimating 
rice crop yield, but in Iran, the maximum leaf area index (LAI) is very accurate. 
After confirming the accuracy of rice cultivation areas and land demarcation, as well 
as the yield of rice in the fields, from now on, the rice plant can be easily identified 
without the need to repeat the ground sampling operation (ROIs) for each year. The 
results of the project can be implemented worldwide and the main condition for the 
results to be correct will be only in a large number of actual samples.
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Fig. 7.7 Conceptual model of how to estimate rice yields using satellite images
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Chapter 8 
Soil Erosion Modeling Using Remote 
Sensing and GIS 

Osama Mirran Hussien Al-Qaim, Vikas G. Jadhao, and Ashish Pandey 

Abstract Besides a naturally occurring process, soil erosion results in a continuous 
loss of topsoil, ecological degradation, etc. Evaluating soil loss from watersheds is 
required while assessing the severity of soil erosion. The average annual soil loss from 
the Nathpa-Jhakri catchment has been estimated by employing the Revised Universal 
Soil Loss Equation (RUSLE) and Morgan-Morgan-Finney (MMF) models in the 
present study. The RUSLE factors and MMF parameters were calculated using mete-
orological data, FAO soil map, ASTER DEM map, European Space Agency (ESA) 
land use/cover map, and other reference studies. The model factors and parameters 
were integrated into the geographic information system (GIS) environment to esti-
mate the soil loss. GIS was used in this study to generate, manipulate, and spatially 
organize disparate data for soil erosion modeling. The estimated average annual soil 
loss using the RUSLE and MMF models was 20.42 and 26.29 tons/ha/year, respec-
tively. The coefficient of determination for sediment yield using the RUSLE and 
MMF models was 0.80 and 0.75, with a variation of 13.41% and 21.62%, respec-
tively. Further, the total catchment area was categorized into the different erosion 
classes, viz., slight, moderate, high, very high, severe, and very severe. The RUSLE 
model showed that about 35.8% of the area of the Nathpa-Jhakri catchment lies in the 
slight to moderate, and 64.2% of the area lies in the high to very severe soil erosion 
classes. The soil loss estimated by MMF model showed that 13.88% of the Nathpa-
Jhakri catchment area lies in the slight to moderate, and 86.12% of the area lies in 
the high to very severe soil erosion classes. The RUSLE model showed more precise 
results than the MMF model for the Nathpa-Jhakri catchment. Based on RUSLE 
model results, about 64.2% catchment area of the Nathpa-Jhakri needs immediate 
attention for proper land use management practices. 
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8.1 Introduction 

Soil erosion is a wide-spreading and severe problem worldwide (Rodrigo-Comino 
2018; Wuepper et al. 2020). It creates implications on environmental, social, 
economic, and political issues through on and off-site damages in developing coun-
tries (Thampapillai and Anderson 1994; Dabral et al. 2008) and leads to a change 
in the water quality and the storage capacity (Pandey et al. 2007). It reduces the soil 
depth and the natural organic content (Langdale et al. 1992) and threatens sustainable 
agriculture and ecosystems (Jain et al. 2010). As per (Dhruvanarayana et al. 1983), 
sheet erosion contributes more significantly to India’s soil erosion problems. Out of 
329 Mha of geographical area, about 167 Mha of the area suffers from severe water 
and wind erosion. The Indian Himalayan region is seriously affected by the erosion 
problem. As per (Raymo and Ruddiman 1992), about 5% of the Earth’s land surface 
is contributed by the Himalayas and Tibet area, but it contributes about 25% of the 
dissolved sediment load of the oceans. 

The erosion assessment methods predicting spatial soil loss distribution are essen-
tially required (USDA ARS (Agricultural Research Service) 2008; Diodato and 
Bellocchi 2010). Remote sensing (RS) and geographic information systems (GISs) 
are advanced and well-known soil and water conservation methods. The use of this 
advanced geospatial technology was made by many researchers cited in the literature 
(Pandey et al. 2007, 2021; Chen et al. 2011; Demirci and Karaburun 2012; Ghosal 
and Bhattacharya 2020). 

GIS can manipulate, store, and display spatial and non-spatial data and digi-
talize the catchment data (Jain et al. 2001). Soil erosion modeling can consider these 
complex interactions influencing soil erosion rate (Devatha et al. 2015). To represent 
the erosion process mathematically, soil erosion models are advanced means (Tiwari 
et al. 2000). Many empirical, conceptual, and physical process-based models are 
available to estimate soil loss (Eisazadeh et al. 2012; Singh and Panda 2017; Igwe  
et al. 2017). These models are designed by considering a specific set of location-
specific conditions and must be tested with changes in conditions. Therefore, the 
soil loss estimation and categorization of the catchment area are essential for imple-
menting soil conservation measures. Among all the models utilized for assessment 
of the soil loss, some most commonly used models are Universal Soil Loss Equation 
(USLE), Modified Universal Soil Loss Equation (MUSLE), and Revised Universal 
Soil Loss Equation (RUSLE) (Udayakumara et al. 2010; Wijesundara et al. 2018). 

The RUSLE model assesses the soil loss for a specific site using the product of six 
major factors (Wischmeier and Smith 1978). The factors include rainfall erosivity 
(R), soil erodibility (K), slope length (L), slope steepness (S), crop management 
(C), and conservation practices factor (P). To enhance the accuracy of quantification 
in soil loss estimation, many scientists used the RUSLE model (Wischmeier and 
Smith 1978; Onstad et al.  1976; Risse et al. 1993; Angima et al. 2003; Pandey et al. 
2008) either in the same or in the modified form. Here, (Yoder et al. 1992) modified 
some factors (LS and C) with a more deterministic approach for estimating the P 
factor incorporated in the RUSLE. According to Rapp (1994), these modifications
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do not have a countable effect on the model efficiency for predictions by RUSLE on 
natural runoff plot data. The RUSLE model is a flexible tool and can be combined 
with geographic information system (GIS) adapted to the different landscapes for 
watershed scale (Wischmeier and Smith 1965; Sharma 2010; Ranzi et al. 2012; 
Prasannakumar et al. 2012; Amsalu and Mengaw 2014; Das et al. 2018). The model 
is used commonly in the decision support system of soil conservation and land use 
planning (Renard and RUSLE 1997). In the current study, the RUSLE model has 
been preferred to estimate the spatial distribution of soil erosion. 

To estimate the soil loss from the field-sized area on the hill slopes, (Morgan et al. 
1984) developed Morgan-Morgan-Finney (MMF) model. The MMF model separates 
the soil erosion process into two phases. One is the water phase, and another is the 
sediment phase. The rainfall energy for splash detachment of soil and overland flow 
volume is estimated in the water phase (Morgan et al. 1984). The second phase of 
the model considers soil particles’ detachment from the soil mass. The soil erosion 
resulted from raindrop impact, and the transport of those particles by overland flow 
is estimated in this phase. 

Considering all the above-narrated constraints and the need for present work, two 
models, namely the Revised Universal Soil Loss Equation (RUSLE) and Morgan-
Morgan-Finney (MMF) model, were selected to estimate the spatial distribution of 
soil erosion in the present study. The recent satellite, rainfall data, and soil data 
were used to assign the model parameters. All these parameters were integrated 
into the GIS environment. The sediment delivery ratio (SDR) was used to estimate 
sediment yield at the catchment’s outlet point. The Nathpa-Jhakri basin having a 
hilly catchment located in the Himalayan range of North India has been selected 
as the study area. The main objective of this study is to estimate the soil loss using 
RUSLE and MMF models by employing remote sensing and geographic information 
systems. 

8.2 Study Area 

The selected Nathpa-Jhakri catchment in the present study is located in the northern 
part of India, within the western zone of the Himalayan range. The areal spread of 
catchment is in the northeast of Himachal Pradesh state and southeast of Jammu and 
Kashmir states. The area lies between 31º00' and 34º00' N latitude and between 77º00' 
and 79º00' N longitude. Figure 8.1 shows the location map of the catchment. The 
Nathpa-Jhakri catchment is a part of a big watershed between China and India, with 
a 30% area falling inside India. Nathpa-Jhakri catchment’s altitude varies between 
1468 to 6751 m above MSL, covering approximately an area of 15,277.92 km2.
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Fig. 8.1 Location map of Nathpa-Jhakri catchment 

8.3 Methodology 

The RUSLE and MMF models were used in the present study to estimate the spatial 
distribution of soil loss. The methodology adopted to extract the parameters for 
erosion modeling is discussed below. 

8.3.1 Erosion Modeling Using RUSLE 

In a grid environment using GIS, the RUSLE model helps to model the erosion 
process (Pandey et al. 2021). The methodology adopted for assessing the spatial 
distribution of soil loss using the RUSLE model is shown in Fig. 8.2.

The average annual soil loss (A, Mg ha year−1) was estimated using the RUSLE 
model (Eq. 8.1). 

A = R × K × L × S × C × P (8.1) 

The measured daily rainfall data of the Indian Meteorological Department (IMD) 
was used in the present study to estimate R factor (Wischmeier and Smith 1978). 
The equation (Eq. 8.2) was developed to find the rainfall erosivity factor based on
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Fournier’s index using the available monthly and annual rainfall data. 

R = 1.735 × 10 
(1.5×log10 

12Σ 
1 

( 
P2 i 
P 

) 
−0.8188) 

(8.2) 

Pi represents the monthly rainfall depth (mm), and P represents the annual rainfall 
depth (mm). 

An equation developed by Wischmeier and Smith (1978) for calculating the soil 
erodibility factor is represented here in Eq. 8.3. 

K = 2.8 × 10−7 × M1.14 × (12 − a) + 4.3 × 10−3 × (b − 2) + 3.3 × (c − 3) 
(8.3) 

where M represents the soil particle size parameter and the M can be estimated as 
(%S + %VFS)(100-%C). S = silt, VFS = very fine sand, and C = clay. The factor a 
represents percent organic content. Factors b and c represent the soil structure code 
and the soil permeability class, respectively. 

As per (Nikolakopoulos et al. 2006), soil loss is more sensitive to S-factor than L-
factor. Then, (Moore and Burch 1986) proposed an equation (Eq. 8.5) for estimation 
of combined LS factor using GIS and used by several researchers in the study (Pandey 
et al. 2021, 2008; Fistikoglu and Harmancioglu 2002; Onyando et al. 2005). 

LS  = (λ/22.13)m (sin α/0.0896)n (8.5)
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where λ = field slope length (m), α = slope gradient (°), and the value of n is taken 
as 1.3. As per (Wischmeier and Smith 1978), the value of m varies according to the 
percent slope. 

For slopes > 5% m = 0.5 
For slopes between 3.5 and 4.5% m = 0.4 
For slopes between 1.0 and 3.0% m = 0.3 
For slopes < 1.0% m = 0.2 

The LS factor was estimated by using ASTER DEM available in 30 m resolutions 
in ESRI ARC-GIS 10.2 using bilinear interpolation techniques. 

For estimation of crop management factor (C) in RUSLE, the land use and land 
cover classifications were carried out using satellite data from www.esa-landcover-
cci.org. The land use and cover map was generated, and the C factor values for 
different land use/land cover classes were obtained from available literature on the 
C factor (Pandey et al. 2009, 2015; Biswas and Pani 2015). 

The RUSLE conservation practice factor (P) values depend upon the land use 
and land cover (LULC) type (Pandey et al. 2015). For agricultural land, P factor is 
assigned as 0.28, and for bare land and other land use/cover, it is assigned as a 1.0 
due to no conservation practice (Pandey et al. 2008; Mondal et al. 2016). 

8.3.1.1 Spatial Inputs for RUSLE Model 

Meteorological Data 
The daily gridded rainfall data (0.25º × 0.25º) for 26 years (1971–1996) was collected 
from the IMD to calculate the monthly erosivity. 

Digital Elevation Model 
The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), 
Global Digital Elevation Model (GDEM) image of 30 m resolution (Fig. 8.3) was  
acquired from the USGS website www.earthexplorer.usgs.gov. Finally, using the 
flow accumulation and slope as input parameters, the topographic factor (LS) map  
was generated in the raster calculator of ArcGIS (Fig. 8.4).

Spatial Land Use/Land Cover Classification Map 
The study area’s land use/land cover classification map was developed using the 
European Space Agency (ESA) available on www.esa-landcover-cci.org (Fig. 8.5). 
Based on the classified LU/LC map, the spatial crop management and conservation 
practice maps were developed and presented in Figs. 8.6 and 8.7.

Soil Map 
The soil erodibility factor map was developed using Food and Agriculture Organi-
zation (FAO) soil map at a scale of 1:5,000,000 available on (www.fao.org/geonet 
work) and is presented in Fig. 8.8.

http://www.esa-landcover-cci.org
http://www.esa-landcover-cci.org
http://www.earthexplorer.usgs.gov
http://www.esa-landcover-cci.org
http://www.fao.org/geonetwork
http://www.fao.org/geonetwork
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Fig. 8.3 ASTER DEM of the catchment

8.3.2 Erosion Modeling Using MMF Model 

Then, (Morgan et al. 1984) developed the Morgan-Morgan-Finney (MMF) model 
to predict soil erosion from the field-sized areas and hilly areas. MMF model is an 
alternative empirical-based soil erosion mode having simple and more flexible. It 
requires less data in operation as compared to other process-based erosion models 
(Shrestha 1997; Mondal et al. 2017). The MMF model works on the physically based 
concept of Meyer and Wischmeier (1969), which involves separating the process of 
soil erosion in the water phase and sediment phase. In the water phase, the model 
determines the runoff volume and the available rainfall energy that is used to detach 
the soil particles from soil mass. In the sediment phase of the model, the soil particles’
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Fig. 8.4 Topographic factors map (LS) for Nathpa-Jhakri

detachment is taken as a function of the soil erodibility, energy of rainfall, and rainfall 
interception affected by vegetation. The transport capacity is computed with the 
overland flow volume, slope, and crop cover management. 

Water Phase 
The rainfall energy and runoff have to be estimated in this phase. For the estimation 
of rainfall kinetic energy (E, J/m2), the annual rainfall data is used. The functional 
relationship between energy and rain intensity given by Wischmeier and Smith (1978) 
is used for modeling rainfall energy. The rainfall kinetic energy is based on the rainfall 
intensity, and the amount of annual rainfall depth can be estimated as
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Fig. 8.5 Spatial distribution of crop management factor (C)

E = R × 
( 
11.9 + 8.7 × log10 I 

) 
(8.6) 

R is the annual rainfall depth (mm/year), and I is the rainfall intensity (mm/hr). The 
runoff will occur when the daily rainfall exceeds the soil moisture storage capacity 
(Morgan et al. 1984). The annual runoff in terms of the volume of overland flow (Q, 
mm) was calculated as 

Q = R × exp(−Rc/Ro) (8.7) 

where Rc = soil moisture storage capacity (mm) and Ro is the ratio of annual rainfall 
(R) and the number of rainy days (Rn).
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Fig. 8.6 LULC map of the catchment

Sediment Phase 
The soil detachment through the splash effect of raindrops and runoff is considered 
in this phase. The soil detachment due to raindrop impact is considered a function of 
the soil detachment index (K, gm/J). Soil detachment index is the weight of detached 
soil from the soil mass per unit of rainfall energy. The detachment of soil by the 
raindrops (F, Kg/m2) is calculated by Eq. 8.8. 

F = K × 
( 
E × e−0.05×A 

) × 10−3 (8.8) 

where E = kinetic energy of rainfall (J/m2) and A = permanent rainfall interception 
(%).
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Fig. 8.7 Spatial distribution of conservation practice factor (P)

Some of the factors such as land slope, overland flow, crop management factors, 
etc., are responsible for the detachment of the soil particles by runoff (G, Kg/m2). 
Thus, the soil particles’ detachment by runoff is given by Eq. 8.9. 

G = C × Q2 × sin(S) × 10−3 (8.9) 

where Q = volume of the overland flow (mm), S = land slope factor (%), and C = 
crop management factor. 

As per (Morgan et al. 1984), the model compares the predicted rate of rainfall 
detachment (F) with the transport capacity (G) for overland flow and equates the rate 
of soil loss to the lower of the two values. 

Figure 8.9 shows the process flowchart of the detailed methodology adopted to 
estimate soil loss using the MMF model. The model compared the transport capacity



154 O. M. H. Al-Qaim et al.

Fig. 8.8 Spatial distribution of the soil erodibility factor (K)

of the overland flow with predicted splash detachment. The lower value between 
transport capacity and soil detachment rate is considered as the soil loss by the 
model.

8.3.2.1 Spatial Inputs for MMF Model 

Soil Map 
The Food and Agriculture Organization (FAO) soil map available on www.fao.org/ 
geonetwork was used to identify the soil moisture storage capacity (Fig. 8.10).

http://www.fao.org/geonetwork
http://www.fao.org/geonetwork
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Fig. 8.9 MMF model process flowchart

Meteorological Data 
The 0.25º × 0.25º gridded data obtained from IMD was used to calculate the rainfall 
energy. For each year, the number of rainy days is required to calculate the mean rain 
per erosive rain day. 

Digital Elevation Model The ASTER data available on www.earthexplorer.usg 
s.gov was used to develop the slope gradient factor map (Fig. 8.11).

Actual (Et) to Potential Evapotranspiration (E0) Map  
The actual (Et) distribution ratio to potential evapotranspiration (E0) for the study 
area was prepared using the data available on www.esa-landcover-cci.org and is 
shown in Fig. 8.12.

8.3.3 Sediment Delivery Ratio (SDR) 

Both models helped in predicting the soil loss in terms of erosion per unit area 
of the catchment. Typically, the sediment transported may have numerous oppor-
tunities to be deposited between the field and point of final deposition. This may

http://www.earthexplorer.usgs.gov
http://www.earthexplorer.usgs.gov
http://www.esa-landcover-cci.org
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Fig. 8.10 Spatial distribution of the soil moisture storage capacity

result in reducing the sediment yield accordingly. The term sediment delivery ratio 
(SDR) indicates the catchment capability for storing and transporting the sediments 
(Gelagay and Minale 2016) and can be defined as 

SDR = Observed sediment yield 

calculated sediment rate × area of watershed 
(8.10) 

Both the MMF models do not include procedures for evaluating deposition that 
occurs in overland flow before reaching concentrated flow channels. Thus, there is a 
need to assess the delivery ratio for both these models.
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Fig. 8.11 Spatial distribution of the slope gradient factor

8.3.4 Model Validation 

The output of both of the models was validated by comparing with the observed 
sediment yield from the catchment for a period from 1971 to 1996.
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Fig. 8.12 Spatial distribution of Et/E0 ratio

8.4 Results and Discussion 

The spatial distribution of soil loss from Nathpa-Jhakri catchment obtained by 
RUSLE and MMF models employing spatial inputs is discussed in the following 
sections.
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Table 8.1 LULC classes of 
the catchment 

LULC type Area (km2) Area (%) 

Barren lands 12,796.506 83.705 

Urban areas 5.996 0.039 

Agricultural lands 693.520 4.536 

Dense forest 69.463 0.454 

Open forest 497.378 3.253 

Snow 1062.250 6.948 

Water body 162.567 1.063 

Total area (km2) 15,287.679 100.000 

8.4.1 Soil Loss by RUSLE Model 

The maps of RUSLE factors are assumed to be constant for all years of this study. 
According to the FAO geonetwork map, there are two soil classes in the Nathpa-
Jhakri watershed, sandy clay loam, and loam. Thus, the values of soil erodibility 
factor (K) were found to be 0.05937 and 0.05524 (tons.ha.h/ha/MJ/mm), respectively. 
The estimated slope length (L) values for the selected catchment range from 1.055 
to 1.143. The slope steepness factor (S) is ranged from 0.031 to 18.6. Seven land 
use/cover classes were identified in the Nathpa-Jhakri catchment (Table 8.1). 

According to the LULC map of the study area, the crop management factor was 
assigned as 0.28 and 1 for the agricultural land and other land use, respectively. The 
resulted annual soil loss using the RUSLE model is shown in Table 8.2, with the 
average soil loss value for all 26 years of the study.

The plot between the RUSLE model results against the observed sediment yield 
is shown in Fig. 8.13. A linear trend line drawn between observed and RUSLE 
estimated sediment yield indicated a non-significant difference with a high coefficient 
of determination (r2) of 0.80. This can be inferred from a straight-line plot. The 
differences between the predicted and observed sediment yields from the RUSLE 
model reinforce the erosion predictions, in general, containing a factor of error.

Areas under different soil erosion classes in the Nathpa-Jhakri catchment using 
the RUSLE model are presented in Table 8.3 and Fig. 8.14. According to the RUSLE 
model results, areas covered by slight, moderate, high, very high, severe, and severe 
erosion potential zones accounted for 29.6%, 6.2%, 14.3%, 34.7%, 15.13%, and 
0.07%, respectively.

8.4.2 Soil Loss by MMF Model 

The resulting transport capacity (G, Kg/m2) and splash detachment by the raindrops 
(F, Kg/m2) of the MMF model and the annual soil loss are given in Table 8.4 for 
26 years (from 1971 to1996).
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Table 8.2 Mean annual soil loss results of RUSLE model 

Years RUSLE mean soil loss (tons/ha/year) Years RUSLE mean soil loss (tons/ha/year) 

1971 38.78 1984 12.22 

1972 8.84 1985 14.44 

1973 18.86 1986 17.87 

1974 13.69 1987 20.46 

1975 25.43 1988 28.5 

1976 14.88 1989 20.77 

1977 6.76 1990 21.92 

1978 42.66 1991 14.15 

1979 16.81 1992 17.5 

1980 35.53 1993 17.65 

1981 13.35 1994 11.55 

1982 49.98 1995 16.91 

1983 14.09 1996 17.34 

Average = 20.42 (tons/ha/year)

Fig. 8.13 Comaprison of RUSLE model results with the observed value

The MMF model was also validated by comparing the observed and estimated 
results of sediment yield, as shown in Fig. 8.15. The lower coefficient of determi-
nation (r2) value (0.65) indicated a lower agreement of the sediment yield than the 
RUSLE model results.
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Table 8.3 Areas under 
different classes of RUSLE 
soil loss results 

Average soil loss 
(tons/ha/year) 

Area (km2) Classes Area (%) 

0–5 4477.06 Slight 29.6 

5–10 919.80 Moderate 6.2 

10–20 2156.02 High 14.3 

20–40 5141.77 Very high 34.7 

40–80 2276.39 Severe 15.13 

> 80 9.71 Very severe 0.07 

Fig. 8.14 Spatial distribution of average annual soil loss (RUSLE)
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Table 8.4 Mean annual soil loss results of MMF model 

Years Transport 
capacity G 
(kg/m2) 

Splash 
detachment 
F (kg/m2) 

Annual soil 
loss 
(kg/m2) 

Years Transport 
capacity G 
(kg/m2) 

Splash 
detachment 
F (kg/m2) 

Annual soil 
loss 
(kg/m2) 

1971 14.462 14.963 14.462 1984 4.781 10.089 4.781 

1972 6.688 12.029 6.688 1985 12.342 15.232 12.342 

1973 6.745 11.876 6.745 1986 20.141 18.376 18.376 

1974 7.396 12.032 7.396 1987 10.873 13.973 10.873 

1975 23.735 18.654 18.654 1988 33.393 19.554 19.554 

1976 5.328 11.627 5.328 1989 21.947 19.582 19.582 

1977 3.711 9.057 3.711 1990 14.141 16.166 14.141 

1978 37.412 22.141 22.141 1991 11.944 15.053 11.944 

1979 7.313 12.535 7.313 1992 12.575 15.210 12.575 

1980 14.733 15.845 14.733 1993 10.267 13.621 10.267 

1981 12.444 14.947 12.444 1994 8.435 14.003 8.435 

1982 72.130 29.639 29.639 1995 18.448 17.016 17.016 

1983 11.538 15.391 11.538 1996 18.359 18.108 18.108 

Average = 13.03 (kg/m2)

Fig. 8.15 Validation of results by MMF model
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Table 8.5 Areas under different classes of MMF soil loss 

Average soil loss of MMF (tons/ha/year) Area (km2) Classes Area (%) 

0–5 799.66 Slight 5.36 

5–10 5843.53 Moderate 39.20 

10–20 5926.67 High 39.76 

20–40 2019.74 Very high 13.55 

40–80 311.00 Severe 2.09 

> 80 5.88 Very severe 0.04 

The areas under different soil erosion classes in the Nathpa-Jhakri catchment by 
the MMF model prediction are presented in Table 8.5 and Fig. 8.16. According to 
the MMF model application, the areas covered by slight erosion, moderate erosion, 
high erosion, very high erosion, severe erosion, and severe erosion potential zones 
accounted for 5.36%, 39.2%, 39.76%, 13.55%, 2.09%, and 0.04%, respectively, in 
the catchment.

8.5 Conclusions 

The spatially distributed soil erosion was estimated by using RUSLE and MMF 
model. Both of the models showed the higher risk potential slope pertaining to soil 
erosion. Based on the study, the following conclusions are drawn.

1. The average annual soil loss by employing the RUSLE model is 20.42 
tons/ha/year from the Nathpa-Jhakri catchment. The results of the RUSLE model 
show that 0.07% of the study area lies in the very severe class (> 80 tons/ha/year), 
15.13% in the severe class (40–80 tons/ha/year), 34.7% in the very high class 
(20–40 tons/ha/year), 14.3% in the high class (10–20 tons/ha/year), 6.2% in 
the moderate class (5–10 tons/ha/year), and 29.6% in the slight class (0–5 
tons/ha/year). 

2. The average annual soil loss by the MMF model is 13.03 tons/ha/year from the 
Nathpa-Jhakri catchment. The results of the MMF model show that 0.04% of the 
study area lies in the very severe class (> 80 tons/ha/year), 2.09% in the severe 
class (40–80 tons/ha/year), 13.55% in the very high class (20–40 tons/ha/year), 
39.76% in the high class (10–20 tons/ha/year), 39.2% in the moderate class (5–10 
tons/ha/year), and 5.36% in the slight class (0–5 tons/ha/year). 

3. A high value of the coefficient of determination and low percentage deviation 
using the RUSLE model as compared to the MMF model inferred that the RUSLE 
model results are more accurate and can be adopted in the hilly Himalayan 
catchments.
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Fig. 8.16 Spatial distribution of average annual soil loss (MMF)

4. The remote sensing data and geographic information system play a signifi-
cant role in generating the parameters from remote catchments for soil erosion 
modeling and watershed management. 

Recommendations The present study was carried out to study the spatial distribu-
tion of the soil loss in the Nathpa-Jhakri catchment using RUSLE and MMF models. 
The results obtained by the RUSLE model show that 64.2% of the catchment area lies 
in high to very severe soil erosion classes. Thus, appropriate soil and water conser-
vation measures should be adopted to minimize the soil loss from the Nathpa-Jhakri 
catchment.
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Chapter 9 
The Mapping of the Intensity 
of Degradation According 
to the Different Land Use in Arid 
Regions: The Case of the Bouhamed 
Watershed, Southern Tunisia 

Nesrine Arrak and Aziza Ghram-Messedi 

Abstract The Bouhamed watershed, which is the subject of our study, belongs to 
an arid ecosystem characterised by an apparent fragility which is manifested by the 
low-vegetation cover and the spatial importance of bare soil areas. The ecosystems 
fragility in this region is mainly due to unfavourable climatic conditions (aridity, 
low rainfall, etc.). To these climatic factors are added inappropriate anthropogenic 
activities (overgrazing, clearing of rangelands, etc.) to the biophysical conditions 
of arid environments. The overexploitation of natural resources in the study region 
has accentuated the degradation of these environments and even their desertification. 
Indeed, in our case study, the implantation of olive trees at the expense of natural 
vegetation exposed the soil to erosion factors. In this context, this work adopts a 
methodology based on the combined contribution of remote sensing and GIS. Our 
approach consists in evaluating the state of desertification and specifying the level 
of sensitivity of surfaces to degradation according to the land use patterns distin-
guished in the study region. As a result, three radiometric indices were calculated 
(the soil adjusted vegetation index (SAVI), brightness index (BI), and colour index 
(CI)) derived from Landsat 8 Operational Land Imager (OLI) dating from 2014, 
whose aim is to produce a summary map that assesses the degradation intensity in 
the Bouhamed watershed. Based on the combination of the three indices comple-
mented by field observations and a spatial database (land use and surface condition) 
integrated in a GIS, it was easy to evaluate and classify the region studied according 
to the intensity of degradation, from the lowest to the highest. The determination of 
the degradation intensity for each land use mode favours the accuracy of the level of
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sensitivity to desertification. Thus, according to the sensitivity to the risk of desertifi-
cation, agropastoral activity (rangelands, cultivated land, ploughed land) is classified 
from very sensitive to not sensitive to risk. The results show the dominance for the 
medium degradation intensity class, with 89% of the total area. This degradation 
class corresponds to surface conditions dominated by loamy to loamy-sandy soils 
with the outcrop of gypsum crust and hardpan. 

Keywords Land use · Desertification · Degradation · Remote sensing · GIS 

9.1 Introduction 

Landscapes in the arid areas of south-eastern Tunisia are changing both as a result 
of the impact of anthropic actions and as response of climate fluctuations. Since the 
beginning of the twentieth century, these arid areas have undergone profound socio-
economic changes which have marked the landscape and exposed it to a proliferation 
of manifestation of land degradation in view of their desertification. The study of 
degradation phenomena is generally related to the increase in hardpan surface, to the 
exposure of the soil to the appearance of outcropping gypsum crust, or to the process 
of wind accumulation leading to the formation of sand dunes in some places. 

Our field study is located in the Northern part of the natural region of Jeffara. It is 
the watershed of Bouhamed, which covers an area of 567 km2. The different biophys-
ical environments present in this area study are in fragile equilibrium. Fragility related 
to an unfavourable climate, belonging to the lower arid stage, as well as to very limited 
natural resources. In such a way that any human activity based on the exploitation 
of those resources jeopardises this equilibrium and leads to the progressive degra-
dation of natural resources, which may even harm sustainable development (Ghram 
Messedi 2009). 

This research provides an overview of the bioclimatic context of the Bouhamed 
watershed, reviews on the effect of long-term environmental anthropization, presents 
the main lines of research aiming at assessing the intensity of degradation linked to 
the land use (rangelands, cultivated lands, ploughed lands), and gives an overview 
of the environmental sensitivity to desertification risk. 

The objective of this research is to map the intensity of environmental degrada-
tion according to the different land use patterns in arid regions. In order to achieve 
this objective, an approach based on optical remote sensing, field observations, 
and the implementation of a geographic information system (GIS) was adopted. 
This approach is based, in the first, on the identification of soil surface states from 
the extraction of radiometric indicators. These are derived from index calculations 
(SAVI, CI, and BI) based on a Landsat OLI image from 2014. In a second step, 
the land use map was produced using satellite imagery photo interpretation and data 
from field observations integrated into a GIS. Finally, the GIS analysis tools helped
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to produce a synthesis map that evaluates the degradation intensity in Bouhamed 
watershed. This map has served as a basis for segmenting the landscape according 
to its sensitivity to the risk of desertification. 

This work contributes to a preliminary assessment of the potential risk to soil 
degradation that takes into account biophysical aspects. This will help us to under-
stand the interactions between the biophysical components of the environment and 
the different uses of natural resources by the populations. 

9.2 Study Area Exposed to Desertification Problems 

9.2.1 Arid Climate and Fragile Biophysical Context 

The study area, which was the subject of our work, covers 564 km2 and encompasses 
the whole of Bouhamed catchment area: it corresponds to an elongated watershed 
with an endoreic character, which occasionally flows to sebkhat EL Maider towards 
the gulf of Bou-Ghrara (Fig. 9.1). From an administrative point of view, the basin 
is located at the boundary between the governorate of Medenine in the east and the 
governorate of Tataouine in the west. The study area is part of the natural region 
of the northern Jeffara in south-eastern Tunisia. The latter constitutes a transitional 
domain between semi-arid of central Tunisia and the desert Saharan South (Ben Fraj 
et al. 2016). 

Fig. 9.1 Location of the Bouhamed watershed. Source administrative division of Tunisia
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The Bouhamed catchment area is printed by a spatial dichotomy between the 
coastline and hinterland of the region: between jebel and plain is a very diverse 
environment, characterised by three major types of landscapes. These are ranged from 
limestone plateaus dominated by monoclonal structural forms of the cuesta type, to 
the quaternary depressions of the coast, passing through the piedmont area dominated 
by the alluvial fan and the plain marked by the appearance of erosion surfaces and 
aeolian landforms. Erosion factors and processes do not occur in the same manner 
across the basin. In fact, in the western part of the plateau and the piedmont, water 
erosion predominates, whereas wind erosion dominates in the eastern part towards 
the plain. 

According to Emberger’s classification (1955), the Bouhamed watershed is part 
of the lower arid stage with a temperate winter variant. The rarity, irregularity, and 
stormy nature of rainfall are factors that exacerbate desertification and limit the 
resilience of degraded environments. Indeed, the annual average is estimated at 
150 mm/year. These quantities of rainfall are characterised by a torrential aspect 
and by an extreme variability between seasons and years (Fig. 9.2). 

Thus, the succession of rainy or dry years is one of the main criteria for all arid 
regions of pre-Saharan Tunisia. The irregular rainfall in time and space accentuates 
the degradation (Khattali 1981). A succession of dry years makes ecological systems 
fragile, whereas a succession of rainy years does not make them regenerate (Floret 
and Pontanier 1976). 

In addition to this irregular rainfall, there is high sunshine and temperatures, 
sometimes excessive (an average of 21.5 °C) which can only be a source of a very 
strong evapotranspiration which is often more important than the rainfall. The average 
values of potential evapotranspiration are very high. Indeed, for the whole of the 
south-east, the average PTE values oscillate between 1400 and 1700 mm/year (4– 
5 mm/day) (Ben Fraj et al. 2016). The winds that blowing throughout year are strong, 
dry, and strong. They participate in their turn to accentuate the drying of the climate.
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The study region has a largely deficient water balance (Ben Fraj et al. 2016). 
Hence, water resources are relatively limited and for the mostly part, non-renewable; 
which is very constraining for rain-fed agriculture and explains the development of 
water-harvesting techniques such as the Jessour1 in this region (Ouessar et al. 2009; 
Bonvallot 1979; Ben Ouezdou 2000; Calianno et al. 2020). 

The water deficit has a direct repercussion on vegetal production and provides 
favourable conditions for the spread of wind erosion phenomena in the soil. Effec-
tively, the soils in the study areas are fragile, vulnerable, and very sensitive to erosion 
processes. These soils are generally poor in organic matter and are characterised by 
the presence of calcareous crusts (Escadafal 1989). 

The natural vegetation is essentially marked by steppe formations adapted to 
climatic and edaphic conditions. Therefore, the vegetation cover varies greatly 
between 0 and 30%: it depends on the edaphic conditions and on the human exploita-
tion (harvesting by herds and for domestic use). It is essentially spontaneous, sparse, 
and predominantly Xerophilous vegetation. 

For several years, the vegetation cover in arid areas has been declining and under-
going intensive regression and degradation. Indeed, the cultivation of the southern 
steppes, by the development of olive and cereal farming, is the cause of the deserti-
fication of natural rangelands, which, through deflation, are transformed into Rocky 
reg, and through the accumulations, into sand dunes (Ministère de l’Environnement 
2009). 

9.2.2 Ancient and Changing Human Occupation 

At the same time, historical sources agree that the south-east region in general and the 
Jeffara, in particular, has always been an area of settlement and passage between the 
sea and the African continent (trade caravan) and between the north and the extreme 
south and the east (Mzabi 1988). Moreover, the absence of anthropic indicators of 
agricultural and/or pastoral activity at the beginning of the prehistoric phase under-
lines the weak hold of the societies of this period on the environment (Jaouadi et al. 
2015). 

During the present period, the pronounced increase in anthropic activities (agri-
culture and pastoralism) bear witness to the radical change in human–environment 
relations in southern Tunisia (Jaouadi et al. 2015). 

Like the whole region of the Jeffara, the geographical unit of Bouhamed has been 
the scene, since the pre-colonial period, of a series of transformations affecting the 
economic and social structures and affects consequently the farming mode, the land

1 Jessour (plural of Jesr) are ancestral hydro-agricultural systems in the Dahar plateau, and Jessour 
consist of small dams built across gullies and wadi thalwegs, creating a succession of terraces that 
partially retain the surface water and sediments required for crop growth (Calianno et al. 2020). 
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occupation, and the ecological environment (Abaab 1986). These transformations 
lead to profound changes in the landscape (Floret et al. 1989). Indeed, since the 
beginning of the twentieth century, the region has undergone socio-economic changes 
that have marked and still mark the landscape. 

These changes are characterised by the passage from an extensive land occupation 
and its natural resources, as part of a nomadic and semi-nomadic lifestyle (collective 
properties and dominance of pastoralism), to a relatively intensive land occupation 
within the framework of a sedentary lifestyle, based on a diversification of economic 
activity (private properties with a limitation of transhumance areas and the extension 
of cereal and tree farming) (Abaab 1986; Floret and Pontanier 1982; Auclair et al. 
1997). The region is marked by three main phases of change (Abaab 1986; Auclair 
et al. 1997; Talbi 1997): (i) nomadic and environmental equilibrium phase of the 
pre-colonial era, (ii) semi-nomadic phase of the colonial era, and (iii) sedentary 
phase of the post-colonial era. 

During the first phase, nomadism is the general aspect that illustrates with an 
absence of pressure on land and physical potential (Talbi 1997). Pastoralism and 
episodic cereal cultivation are the main activities. Consequently, the ecological 
system is well balanced, with an absence of pressure on the land, and the physical 
potential has been preserved in these fragile areas. 

Colonial intervention during the second phase has led to the beginning of a process 
of deconstructing lifestyles (strategy of sedentarisation, limitation of transhumance 
areas, privatisation of collective lands, etc.) and intensifying the land occupation and 
natural resources (Guillaume and Romagny 2003). This phase is characterised by 
the fragilisation of pastoral activities and the development of a front of agricultural 
colonisation towards the plain. 

During the sedentary phase of the post-colonial era, the dynamics involved reached 
a new threshold from the 1960s and 1970s under the effect of population growth and 
the Tunisian State policies (Guillaume et al. 2005). This phase is characterised not 
only by an increasing artificialisation of the environment, but also by an acceler-
ated development of agricultural holdings in at-risk areas and by the strategies of 
strong mobilisation of water resources and territorial planning implemented via the 
national government (Romagny and Guillaume 2004). This phase is the phase of a 
total breakdown of the rules that relate humans to their environment. Under these 
conditions, anthropic pressure is considered the main cause of desertification, and 
climatic conditions exacerbate the damage caused by human activity (Ouerchfani 
2012). However, today’s man is trying, through the means of combating desertifi-
cation, to save a worrying but resilient situation. A resilience which related to new 
strategies2 of adaptation to a weakened environment (Fig. 9.3).

2 In 1962, when the first national plan for economic and social development was implemented. This 
plan gave particular importance to the fight against sand encroachment (Khatteli 1996; Ouessar 
et al. 2006). 
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Arboriculture Range land 

Fig. 9.3 Example of current occupation in the Bouhamed watershed. Photo shoot of Arrak N. 
dating from a field mission of 2014 

9.3 Methodological Approach to Mapping Land 
Degradation Based on Remote Sensing and GIS 

9.3.1 Data and Tools 

The methodological approach (Fig. 9.4.) followed for the study of the degradation of 
arid environments according to land use patterns is essentially based on three types 
of data: image data (Landsat OLI images dating from 2014), field data, and existing 
cartographic data (topographic, geological, and thematic maps).

• Satellite Data: 

This study was mainly based on data from a Landsat platform image of the OLI sensor 
dated of April 2014 (Table 9.1). This image was chosen because it was acquired close 
to the beginning of our field observations. Additionally, this spring date corresponds 
in arid regions to the vegetation peaks of a large number of natural species, as well as 
that of cereal species cultivated in the land plots (Ghram Messedi 2009).The image is 
acquired for free, on the USGS download site.3 The image is already geo-referenced 
but it did not procure radiometric and atmospheric calibration. For our study, we 
proceeded with the radiometric correction in a first step (the conversion of digital 
numbers (DN) to reflectance); then, in a second step, we applied an atmospheric 
correction.4 

3 http://earthexplorer.usgs.gov/ 
4 The dark object subtraction (DOS) was used in this study. The DOS method has been developed for 
early generation Landsat sensors (e.g. TM), over the next several years, research on the application 
of the DOS method in analysing Landsat 8 data deserves further examination (Gilmore and Ashty 
Saleem 2015).

http://earthexplorer.usgs.gov/
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Fig. 9.4 Methodology adopted in estimating the intensity of degradation in the Bouhamed 
watershed

The radiometric and atmospheric correction of the image are carried out using 
ENVI® image processing software. 

The satellite image was used as a basis for the calculation of radiometric index 
and the creation of neo-channels. The Google Earth image and the ArcGIS® software 
base map have been useful with its fine resolution to refine the visual interpretation 
of different types of land use. 

• Field data: 

Field data collection was based on a sampling of a set of stations using the Landsat 
satellite image as reference. For each station, descriptive sheets were drawn up. These 
sheets contain GPS surveys as well as a description of the physical environment and 
a characterisation of the types of human occupation. Around thirty control points 
throughout the watershed are being explored. These points are chosen according to 
their topographic position in order to present the different type of landscape.
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Table 9.1 Landsat OLI image characteristics 

Image Date of 
acquisition 

The 
path 
and 
the 
row 

Type of 
sensor 

Satellite 
generation 

Number 
of bands 

Spatial 
resolution 

Radiometric 
resolution 

Landsat 02/04/14 P: 
190, 
R: 
37 

OLI-TIRS: 
Operational 
Land 
Imager 
(OLI), 
Thermal 
Infrared 
Sensor 
(TIRS) 

Landsat 8 11 
bands 

General: 
30 m 
PAN: 
15 m 
THER: 
60 m 

B1: 
0.433–0.453 µm. 
Aerosols 

B2: 
0.45–0.515 µm. 
B 

B3: 
0.525–0.6 µm. G 

B4: 
0.63–0.68 µm. R 

B5: 
0.845–0.885 µm. 
NIR 

B6: 
1.650–1.660 µm. 
SWIR 1 

B7: 
2.100–2.300 µm. 
SWIR 2 

B8-PAN: 
0.500–0.680 µm 

B9-CIRRUS: 
1.360–1.390 µm 

B10: 
10.30–11.30 µm. 
TIRS 1 
B11: 
11.50–15.50 µm. 
TIRS 2 

Source https://www.nasa.gov

These surveys were integrated into the geographic information system, to be used 
as a support for photo interpretation of the land use map and also for the confrontation 
with the results obtained from the radiometric indices. 

• Existing data:

https://www.nasa.gov
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These data concern various information (topography, hydrographic network, 
pedology, vegetation, climate, geology, administrative boundaries, and infrastruc-
tures). All of this data was digitised and geo-referenced and then integrated into a 
GIS to developpe a geodatabase of our watershed. Such a database was helped us to 
interpreted the phenomenon of the environmental degradation. 

9.3.2 Soil Degradation Mapping Method 

• Calculation of radiometric index: 

Radiometric indices are new synthetic information layers that will be calculated based 
on statistical analysis methods and arithmetic channels combinations leading to the 
creation of new channels (neo-channels) (Cherel 2010). These mathematical opera-
tions are often based on the red and infrared bands because the largest differences in 
vegetation and soils reflectance are observed between these two bands. 

The calculation of indices is used to discriminate a set of radiometric indicators 
that take into consideration the main physical characteristics of environment such 
as soil (texture, colour, roughness, moisture, etc.) and vegetation (density, biomass, 
etc.), in order to assess the state of degradation and distinguish between different soil 
surface states. Three indices were chosen to reflect vegetation, soil surface brightness, 
and soil colour. These indices appear to be the most suitable for the context of 
drylands. Indeed, studies carried out in the Tunisian arid zone (Ghram Messedi 
2009; Escadafal 1989, 2007; Belghith 1997, 2003; Ghram Messedi 2007 and Delaitre 
2007), have already demonstrated their effectiveness in distinguishing the different 
types of surface conditions. These are the soil adjusted vegetation index (SAVI), the 
colour index (CI), and the brightness index (BI) (Table 9.2). 

Table 9.2 Characteristics of the radiometric indexes 

Index Equation Types Properties Reference 

SAVI (1 + L) (Bpir−Br ) 
Bpir+Br+L 

L is a constant equal to 
0.55 

Vegetation 
index 

Minimise soil effects 
and introduce a 
fitting parameter “L” 
which characterises 
the soil and its 
vegetation cover 

Huete 1988) 

CI (Br − Bv)/(Br + Bv) Soil index To indicate the state 
of soil degradation 

Pouget et al. 
1988) 

BI 
( 
Br2 + Bpir2

)∧
0.5 Soil index This index reflects 

the albedo of 
surfaces and allows 
vegetated cover to be 
separated from bare 
mineral areas 

Escadafal and 
Bacha 1994)
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The particular interest of SAVI index is for the calculation of the fraction of 
vegetation cover under sparse vegetation conditions in our study area. SAVI helps to 
reduce the effect of soil in areas with partial and very limited vegetation. Regarding 
the colour index, many studies have highlighted its interest in characterising the 
state of soil degradation, particularly in arid and semi-arid regions (Escadafal et al. 
1994; Mougenot and Cailleu 1995; Bannari et al. 2008). In the case of the Bouhamed 
catchment, this index is mainly sensitive to the presence of red coloured materials 
in the soil, as opposed to the gypsum and limestone crust which have white–grey 
colour. In addition to colour, the spectral properties of a soil are intimately related to 
the variation in its brightness (Bannari et al. 1996). This variability makes it possible 
to identify the overall reflectance of a soil. The brightness index helps to distinguish 
between vegetated surfaces and bare soil. 

The indices were calculated using ENVI®. The results obtained were exported to 
ARCGIS® to better interpret the radiometric values of each index. 

• Construction of the GIS database: 

The collection of existing maps served as the basis for a need for a data set. These 
data extracted from the existing map base concern a range of vector information. 
This information presents the set of spatial and descriptive data layers structured in 
a GIS  (Fig.  9.5). 

Fig. 9.5 Geodatabase GIS
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Other sources were used in this study to enrich the database, such as binary raster 
images of the S huttle R adar T opography M ission (SRTM5 ). These images are used 
to facilitate the extraction of contour lines, wadis, and the creation of a digital terrain 
model. Other data sources, such as the ArcGIS base map and the open geoportals, 
have been exploited. In fact, Website such as Google Maps and Google Earth that 
provide daily updates has facilitated the updating of the study base mapping. 

9.4 Study and Assessment of Degradation Intensity 
in the Bouhamed Watershed 

9.4.1 Mapping of the Surface State by the Spectral Indices 
Approach 

The mapping of surface states was based on the combination of the three calculated 
radiometric indices (Fig. 9.6). Such a combination allowed us to assemble informa-
tion on both vegetation (state, density) and soil (typology, presence of crusts, and 
aeolian accumulations). The result was integrated into our geodatabase. The thematic 
interpretation, in terms of surface states, of the combination of the three indices is 
based on their average value and their relative comparison with the GPS surveys and 
the general context of the study area (the GIS database).

The combination of these three indices shows a general distinction between: 

• Unvegetated surfaces with a high-brightness index (BI) and a very low-vegetation 
index (SAVI) value. These surfaces are either characterised by the presence of 
sandy accumulation or crust (gypsum or limestone) with a low CI, or with a 
dominance of coarse fragments (medium to high-CI value). 

• The loamy-sandy surfaces have a high-colour index (CI) and a low-brightness 
index (BI). These surfaces are either covered by dense vegetation (high SAVI) or 
medium to sparse vegetation (medium to low SAVI); 

The radiometric values derived from the addition of indices were classified into 
nine categories of the most distinguishable surface states in the Bouhamed watershed. 
The set of nine classes thus defined is visualised on a map. In order to determine the 
thematic significance of this set, we used the calculation of the average value of each 
index for each class (Fig. 9.7).

Finally, the different types of surface states can be described as follows:

• The first class has the lowest vegetation index values compared to other classes, 
and colour and brightness index values are medium to high. It is the class that 
groups the stony surfaces that concern mainly some wadi beds (wadi Bir El Ouelja 
and its tributaries). In these areas, the vegetation is almost absent, or at least has

5 https://www2.jpl.nasa.gov/srtm/ 

https://www2.jpl.nasa.gov/srtm/
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Fig. 9.6 Values of the three indices (SAVI + CI + BI) from the lowest to the highest. Source 
Landsat OLI 2014
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Fig. 9.7 Surface states map of Bouhamed watershed. Source Landsat OLI image 2014

very little chlorophyll activity. This class represents only 0.6% of the total area 
of the study region (Fig. 9.8).

• The second class is distinctive with high brightness, low-SAVI values, and 
medium to low-colour index values. This increase in reflectance is related to 
the presence of bright gypsum crystals (Younis et al. 1997) indicating probably 
the presence of gypsum crusts. The low-SAVI value reflects the absence of vege-
tation. The medium CI value is related to the local presence of discontinuous to
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0.61 
0.6 

1 
2.06 

28.77 

38.5 

12.77 

0.2 
15.49 

Shaded surface 

Stony surface 

Outcropping crust (limestone or 
gypsum crust) 
Slaked Loamy surface 

Loamy surface with Outcropping 
gypsum crust 
Loamy-sandy surface with low 
density vegetation 
Current alluvium with high density 
vegetation 
Aeolian sail 

mixt surface: Aeolian sail and 
nebkha 

Fig. 9.8 Surface area of the different types of surface states class in the Bouhamed watershed. 
Source Surface states map 

continuous silty cover and marks the absence of sand fraction. Spatially, this class 
of outcropping crusts covers only 1% of the overall catchment area. It is located 
on the middle terrace between wadi Bouhamed and wadi Es-sder.

• The third class includes slaked loamy surface. The presence of the hardpan on 
this surface explains the higher values of the colour index. This hardpanis an 
extremely unfavourable factor for the reinstallation of plant cover because of its 
impact on water balance, germination, and the emergence of seedlings (Floret and 
Pontanier 1981; Houerou 1995). This would explain the very low-SAVI values. 
Hardpan surface appears on the loamy or loamy-sandy soil. This class forms only 
2% of the total area of the study area (Fig. 9.8). 

• The fourth class is a loamy surface with outcropping gypsum crust which covers 
more than 28% of the total surface area of the catchment (Fig. 9.8). These surfaces 
characterise the middle terraces located in the low plain of the eastern part of the 
catchment area. In this class, the colour and brightness indices record very high 
values; conversely, SAVI index has a low value. 

• The fifth class develops on surfaces marked by high values of brightness index 
and by medium values for the colour and vegetation index. Spatially, this class is 
the most extensive since it covers 38.5% of the general area study (Fig. 9.8). This 
class concerns loamy-sandy surface with low-density vegetation. 

• The sixth class of current alluvium with dense vegetation and high-chlorophyll 
activity. This class is distinct by the highest average value of SAVI and by a 
relatively moderate CI and BI values. This class corresponds spatially to areas of 
vegetation with a relatively high-cover rate limited to areas of runoff concentration
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(wadi and alluvial plain). These zones are formed on 12, 77% of the total area 
(Fig. 9.8). 

• The seventh class is the class with the highest brightness and low-average SAVI 
and CI values. It is also the class with a very limited spatial extent with 0.2% 
(Fig. 9.8). It concerns the expanses of unvegetated aeolian sail zone in the eastern 
part of the study area. 

• The eighth class is distinguished by a fairly high-colour index and brightness 
index with a slight increase in SAVI. This class covers a fairly large area of 
15.49% (Fig. 9.8). It concerns the upper and the lower plain. It is a mixt surface 
characterises with aeolian sail and nebkha. 

A class of shadow zones has been individualised. These are opaque elements 
with a low-radiometry variation (Ait Ahtman 2017). In our case study, these surfaces 
correspond to the shadow zones of reliefs with a high roughness and which extend 
over 0.6% of the total surface area (Fig. 9.8). 

9.4.2 Mapping Human Occupation Patterns 

The aim, at this level of search, is to map land use using the photo interpretation 
of the Landsat OLI image and the very high-resolution satellite image backgrounds 
integrated into ARCGIS base map, combined essentially with field observation data, 
and using GIS functions. 

Four types of use are distinguished: a. rangeland, b. cultivated land, c. ploughed 
land, and d. habitat (Fig. 9.9). 

• Rangelands are the dominant agropastoral activities in the catchment area. Indeed, 
77% of the area is occupied by rangelands.

Fig. 9.9 Surface area of the 
different types of land use in 
the Bouhamed watershed

Rangeland 
76.94% 

Habitat 
0.35% 

Plowed area 
6.51% 

Cultivated area 
16.20% 



9 The Mapping of the Intensity of Degradation According … 185

• Cultivated land represents only 16.2% of the total surface area. In the Bouhamed 
catchment area, approximately 92 km2 of the land is occupied by arboriculture 
(mainly olive trees). 

• The ploughed land is essentially prepared parcel for cereal cultivation. This mode 
of use is not of great spatial importance. There is 6.5% of the total area that is 
occupied by ploughed land. The latter are sometimes transformed into abandoned 
lands covered by hardpan surface or aeolian accumulations. 

• Habitats are a class which has an area not exceeding 0.4% of the entire watershed. 

The spatial organisation of agropastoral activities according to a topographical 
hierarchy closely linked to the restrictive conditions of the environment (Fig. 9.10). In 
the plateau and piedmont area, except for the small areas devoted to olive cultivation 
behind the jessour installed across the wadis and ravines, rangeland dominates. To 
the upper plain zone, a mosaic between large rangeland areas and cultivated areas 
which limited by topographic and edaphic constraints. In the low plain, another type 
of mosaic between increasingly fragmented and spatially limited rangeland areas and 
increasingly invasive cultivated areas. It was the extension of cereal and arboriculture 
to the detriment of the steppe rangelands on the loamy or sandy plains.

9.4.3 Determination of the Intensity of Degradation 

The evaluation of radiometric indicators of surface helps to identify and characterise 
the intensity of environmental degradation. The dominant radiometric value was 
considered to be an essential criterion for characterising the intensity of degradation. 
This intensity decreases in the case of the presence of a significant vegetation cover 
(in case of medium or heigh SAVI index value) and increases in the case of the 
dominance of bare soil (in case of medium or heigh BI or CI index value). Indeed, 
vegetation cover and soil type have effects on increasing or decreasing forms of water 
or wind erosion. 

The approach adopted for characterising the degradation intensity allowed the 
stratification of the landscape into four classes (Fig. 9.11). The interpretation of 
these classes has provided some spatial information about the functioning of the 
environment in relation to the risks of soil degradation.

An intensity scale ranging from very low to high degradation has been adopted. 
This scale includes four degradation classes (Table 9.3): (i) very low degradation; 
(ii) low degradation; (iii) medium degradation, and (iv) high degradation.

In Bouhamed watershed, the dominance was for the medium degradation intensity 
class, with 89% of the total area. This degradation class is characterised by a low-
vegetation index and medium brightness and colour indices. It corresponds to surface 
conditions dominated by loamy to loamy-sandy soils with the outcrop of gypsum 
crust and hardpan. However, the rest of the area is occupied by classes with either low
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Fig. 9.10 Main modes of land use in the Bouhamed watershed
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Fig. 9.11 Degradation intensity in Bouhamed watershed

to very low degradation or high degradation. In fact, the areas characterised by high 
to medium radiometric values for the SAVI index and in parallel low-radiometric 
values for the colour and brightness indices are considered as weakly degraded areas 
(current alluvium with dense vegetation and surfaces with sparse vegetation). On 
the other hand, areas with low-radiometric values for the SAVI and high-radiometric
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Table 9.3 Degradation intensity and value of corresponding indices 

Degradation degree SAVI BI CI 

Class 1 Very low degradation 0.34–0.39 0.05–0.10 − 0.86 to − 0.77 
Class 2 Low degradation 0.24–0.34 0.10–0.15 − 0.77 to − 0.69 
Class 3 Medium degradation 0.14–0.244 0.15–0.18 − 0.69 to − 0.61 
Class 4 High degradation 0.04–0.14 0.18–0.20 − 0.61 to − 0.56

values for the colour and brightness indices are considered to be highly degraded 
areas (stony or gypseous crusted surfaces and sandy surfaces). 

9.4.4 Assessment of the State of Desertification 
by Specification of the Sensitivity Level: Summary Map 

In this state of work, the synthesis map was based on a combination of the three 
landscape indicators developed in this research. It is a spatial cross in a GIS of maps 
of surface status, land use, and degradation intensity. This crossing has facilitated, 
in the first step, to map the degree of degradation intensity to according to each land 
use type (Figs. 9.12 and 9.13). In a second step, this crossing allowed us to draw up 
a summary table specifying for each land use category the level of degradation and 
the level of sensitivity to desertification by pointing to the erosion process that can 
be potentially responsible (Table 9.4). 

This simple method of assessing land degradation related to human activities 
further confirms that the overall trend across the Bouhamed watershed is to medium 
degradation, making the region moderately sensitive to potential desertification. In$ 
detail, the catchment area can be divided into three main types of trends:

• Areas of very low to low degradation with little sensitivity to desertification: the  
areas belonging to this class (4.57% of the total surface area) are generally located

Fig. 9.12 Spatial distribution of the level of degradation according to the mode of land use in the 
Bouhamed watershed
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Fig. 9.13 Summary map: intensity of degradation of the Bouhamed watershed according to land 
use patterns

in the wadi beds (e.g. wadi Bouhamed and wadi Es-des) and in cultivated land on 
sandy loam soils (cultivated terraces). This low level of degradation is essentially 
due to the proliferation of hydric and aeolian deposited soils, which encourage 
the development of plant cover (natural or cultivated).

• Areas of medium degradation with moderately sensitive to desertification: this  
class, which is the most spatially extensive, presents 88.9% of the total area, gener-
ally includes the rangelands. However, these are characterised by the presence of 
sparse and reduced vegetation interspersed by a silty-sandy soil, hardpan surface,
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and aeolian formation. This degradation is mainly due to overgrazing and the 
transformation of these rangelands into abandoned agricultural lands.

• Areas of high degradation with very sensitive to desertification: this class presents 
only 6.47% of the total surface, and this type of degradation is located essentially 
in the downstream and intermediate part of the Bouhamed watershed. In the 
downstream part, the high degradation mainly affects area known as El Grabat 
and in the alluvial terrace on the right bank of wadi Bouhamed. In the intermediate 
part, a strong degradation was also identified in the land application areas of wadi 
Bir El Ouelja. In these areas, agriculture (arboriculture and ploughing) remains 
the dominant activity. The area is therefore highly sensitive to aeolian erosion and 
is marked by the manifestations of the seeding phenomenon. 

9.5 Discussion 

Along this work, we were interested in the qualitative surface state degradation. A 
concept of degradation which is in relation to human occupation patterns and resource 
availability (soil surface state and vegetation) (Ghram Messedi 2009). In fact, the 
soil surface state reflects the intensity of degradation in relation to water and wind 
erosion. In addition, a decrease in vegetation and the proliferation of gypsum crusts 
and hardpan surface contributes to increase runoff (Escadafal 1989, 2012; Cherel 
2010). The severity of the degradation threat varies based on the type and intensity 
of human activity. Hence, the interest of this study and the results obtained, which 
show the dominance for the medium and strong degradation intensity with more 
than 95% of the total area, can only confirm the statements of several research on 
the degradation of arid and semi-arid regions in general and the Jeffara in particular 
(Talbi 1997, 1983, 1993; Khatteli 1996; Ouessar et al. 2006; Escadafal 2012; Omrani 
1982; Abaab 1981, 1984;Nasr  1993). Such research also shows that these degradation 
phenomena hinder the sustainable development of often economically and socially 
disadvantaged regions (Pnue 1991). 

In this work, we tried to account for the sensitivity of the arid environments of a 
region of the northern Jeffara both in their biophysical context and in relation to the 
agropastoral activities of the population. The detection of degraded land in the study 
area was based mainly on the combination of three spectral indices (SAVI, BI, and 
CI). The values of these indices, calculated at the pixel scale, were related to field 
observations and existing data. 

In the light of the results obtained, we note that the combination based on the 
indices of colour, brightness, and vegetation significantly discriminate the different 
levels of soil degradation and also allows a very good-separating power between 
the different surface states classes considered. We can therefore conclude that soil 
colour, brightness levels, and vegetation are important parameters for mapping degra-
dation intensity and desertification sensitive. However, radiometric confusions can 
be noticed, but the knowledge of the field and the existing database can adjust 
the mapping results. The above results corroborate the work of several authors
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(Ghram Messedi 2009; Khatteli 1996; Mougenot and Cailleu 1995; Escadafal 2012; 
Kpedenou and Koumoi 2019). 

Although these indices have proven their effectiveness, the possibility of adding 
other indices for better discrimination of the different components of the environment 
is welcome. In this context, we can mention the green atmospherically resistant 
vegetation index (GARI) which uses the apparent reflectance of the three visible 
channels (blue, red, and green) and the near infrared channel in order to establish a 
linear relationship with surface biophysical parameters, or the normalised difference 
water index (NDWI) which is designed to detect the presence of water in vegetation. 

9.6 Conclusion 

The present study mapped degraded land based on spectral indices deduced from 
Landsat OLI satellite imagery. The results revealed different degradation intensities 
unevenly distributed between very low (0.14%), low (4.44%), moderate (88.95%), 
and high (6.47%). Spatially, the rangeland areas are most affected by a moderate 
intensity of degradation. Whilst, the areas most affected by strong degradation 
are those under agricultural cultivation where the manifestations of the seeding 
phenomenon are the most pronounced. This phenomenon has already been the subject 
of a diachronic study conducted on the dynamics of aeolian accumulations in the 
Bouhamed watershed (Arrak et al. 2021). 

This work is a contribution to the detection and location of degraded land and will 
provide local actors with a decision-making tool in the fight against desertification. 
However, given the importance of human pressures in South-East Tunisia, diachronic 
analyses are being carried out to study the extent and evolution of land degradation 
in order to reflect on the implementation of natural resource conservation strategies 
(Arrak et al. 2021). Indeed, diachronic analyses of landscape changes and their long-
term monitoring will allow to indicate adaptation solutions of societies to climate 
and landscape change impacts. 

9.7 Recommendation 

Certainly, the spectral richness of the multispectral (OLI) sensors has allowed the 
interest and importance of integrating the red and infrared channels into the indices 
considered in this study to be clarified. However, it is desirable to further the analysis 
by testing either the power of hyperspectral remote sensing in this field of application 
since this technology consists of simultaneous acquisition of images in many narrow 
and contiguous spectral bands. Either from the coupling of radar and optics at very 
high-spatial resolution. The use of radar systems makes it possible to fill the gaps in 
the spectral range of optical imaging (microwave range).
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Chapter 10 
Applicability of the Global Land 
Evaporation Amsterdam Model Data 
for Basin-Scale Spatiotemporal Drought 
Assessment 

Ali Khoshnazar, Gerald Augusto Corzo Perez, and Vitali Diaz 

Abstract Drought directly impacts the living organisms and environment, and 
thereby, its assessment is essential. Different drought indices require different data, 
which can be obtained based on models or in-situ measurements, demanding a signif-
icant amount of effort. Using remotely sensed (RS) data from satellites can facilitate 
this data acquisition. Nowadays, more and more satellite techniques are rising, high-
lighting the need to assess the accuracy of their data and the reliability of the results 
obtained employing them. The Wet-environment Evapotranspiration Precipitation 
Standardized Index (WEPSI) has shown good performance in drought monitoring 
and assessment, especially for agricultural purposes. This chapter employs the Global 
Land Evaporation Amsterdam Model (GLEAM) data to investigate its applicability 
in the Lempa River basin drought assessment using WEPSI. In this order, evalu-
ated data obtained from the Water Evaluation and Planning system (WEAP) were 
used as the basis for comparison. Precisely, a comparison was made with GLEAM 
and WEAP-based data as well as WEPSI time series based on these two datasets. 
The results show relatively high similarity between these two datasets and calculated 
WEPSI drought indices. This validates the good performance of GLEAM-based data 
in drought monitoring and assessment based on WEPSI. 

Keywords Remote sensing · GLEAM · Drought index · WEPSI · Drought 
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10.1 Introduction 

Water is the fundamental basis of biological organizations (Voeikov and Del Giudice 
2009), and thereby, alterations in its availability directly impact the living organ-
isms and environment. Drought is mostly related to the lack of water in a specific 
period of time, leading to a reduction in the precipitation and variation of other mete-
orological variables (Mishra and Singh 2010). During the past decades, the areas 
affected by drought are almost doubled worldwide, which has increased mortality 
and respiratory-related disease (Berman et al. 2021). This hazard is also one of the 
most important drivers of agricultural production drop and economic losses that 
alter human life quality (Zhang et al. 2021). Drought assessment that needs hydrom-
eteorological data is one of the essential tasks in water planning and management 
(Mishra and Singh 2010). This data necessity is a concern for drought index selec-
tion. The required hydrometeorological data are usually obtained from models or 
in-situ measurements and requires a high deal of effort. Using remotely sensed data 
from satellites can facilitate this data acquisition and therefore resolve this chal-
lenge. Nowadays, more and more satellite techniques are rising, highlighting the 
need to assess the accuracy of their data and the reliability of the results obtained 
employing this data (Congalton 1991). Application of remote sensing (RS) data in 
drought calculation and assessment is one area that requires comprehensive attention 
concerning these discussed issues (Schellberg et al. 2008). 

There already exist numerous drought indices in the literature. However, the 
application of RS-data, its accuracy, and eligibility are not widely studied in the 
calculation of these drought indices. Regarding the methodology for drought index 
calculation and identification of this phenomenon, the Palmer Drought Severity Index 
(PDSI) (Palmer 1965) was one of earlier attempts for agricultural purposes. Later, 
the Standardized Precipitation Index (SPI) (McKee et al. 1993) was introduced, 
which is one of the well-known drought indices working based on the precipitation 
data. In an attempt to address PDSI’s drawback and make it a suitable index for 
comparing different regions, a so-called Self-Calibrated Palmer Drought Severity 
Index (scPDSI) (Wells et al. 2004) was developed. Additionally, for considering the 
role of frozen precipitation that was missed in PDSI, Shafer and Dezman (Shafer and 
Dezman 1982) introduced the Surface Water Supply Index (SWSI). The Standard-
ized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2010) is  
another widely used index that incorporates the role of climate change in SPI’s struc-
ture. Khoshnazar et al. (2021a) suggested the Wet-environment Evapotranspiration 
Precipitation Standardized Index (WEPSI) that works based on SPI’s structure and 
suggests applying the wet evapotranspiration as the suitable water demand indicator. 

Wei et al. (2021) used remotely sensed data to monitor drought dynamics in 
China, employing a number of drought indices, including SPI. Javed et al. (2021) 
used global remote sensing data to study agricultural and meteorological droughts 
over China by applying the Standardized Precipitation and Vegetation Water Supply
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Index (SVSWI). Vicente-Serrano et al. (2018) used remote sensing data to calculate 
the global Standardized Evapotranspiration Deficit Index (SEDI). 

It is worth noting that obtaining ET data that is present in the structure of several 
drought indices largely depends on modeling or other expensive attempts that may 
restrict its popularity. In this process of obtaining ET, RS approaches come in handy 
as a low-cost approach compared to traditional methods (Wen et al. 2021). Recently, a 
wide range of RS-based ET products [e.g., the Global Land Evaporation Amsterdam 
Model (GLEAM) (Martens et al. 2017)] have been developed globally and locally to 
complement the limited land surface coverage of the ground-based ET measurements 
(Wagle and Gowda 2019). RS-based ET data are used to monitor water use and assist 
in planning management. This ET data can be employed to simplify obtaining the 
values of this variable and, consequently, incorporating it in WEPSI drought index 
structure to improve drought monitoring accuracy compared with only precipitation-
based drought indices (e.g., SPI) (Lu et al. 2019). 

Khoshnazar et al. (2021a) showed that water shortage, and thereby, WEPSI could 
capture soil moisture status, and there is a relation between WEPSI and cereal produc-
tion (Lewis et al. 1998). Hence, in this research, we have assessed droughts by 
applying WEPSI at the catchment scale and have used ET data calculated from a 
hydrological model, the Water Evaluation and Planning system (WEAP). We have 
further incorporated a global ET dataset, the GLEAM data, to analyze the suitability 
of the remotely sensed data for its use in WEPSI-based local drought assessments. 
This is the first attempt to use remotely sensed data in WEPSI’s structure that has 
shown good performance in agricultural drought monitoring. 

The remainder of this chapter is organized as follows. Section 10.2 describes the 
materials and methods that are used in this research. The next section illustrates the 
results and provides discussions on them. And the final section concludes the chapter. 

10.2 Materials and Methods 

In this section, we first explain our case study area. Then, we provide a brief descrip-
tion of the two models (WEAP hydrological model and GLEAM RS-based model) 
used to obtain the required data for WEPSI calculation. Afterward, the WEPSI calcu-
lation method is explained. The final part of this section is dedicated to the description 
of the experimental setup. 

10.2.1 Case Study 

In order to investigate the applicability of remote sensing data, we selected the Lempa 
River basin, which is the longest river in the Central American dry corridor (422 km). 
The river emanates in Guatemala, and its mouth is the Pacific Ocean in El Salvadorian 
territory. 85% of the Lempa River length streams in El Salvador (Hernández 2005).
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A part of the river is located in Honduras as well (Fig. 10.1; Khoshnazar et al. 
2021b). Around half of El Salvador’s land is shared with the basin area, which is 
17,790 km2. The basin’s daily average temperature, total annual precipitation, and 
yearly runoff are 23.5 °C, 1698 mm, and 19.21 dm3 s−1 km2, respectively. The 
majority of El Salvadorian surface water and its people depend on the Lempa River 
basin. At the same time, the river is highly affected by droughts and other extreme 
events that decreased its quality and quantity (El Salvador’s Ministry of Environment 
and Natural Resources (MARN) 2019b; Global Environment Facility 2020; Helman  
and Tomlinson 2018; Jennewein and Jones 2016). 

Fig. 10.1 Lempa river basin location (Khoshnazar et al. 2021b)
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10.2.2 WEAP Model 

The Stockholm Environment Institute’s model ‘the Water Evaluation And Plan-
ning system (WEAP)’ (Seiber and Purkey 2015) is used to obtain essential data 
for WEPSI calculation between 1980 and 2010. El Salvador’s Ministry of Environ-
ment and Natural Resources (MARN) (2020) data, including hydrometeorological 
and soil characteristics, were used as the model’s inputs. The basin comprises eight 
sub-basins, including Lempa1, Lempa2, Lempa3, Guajillo, Suquioyo, Acelhuate, 
SS6, and SS3 (Fig. 10.1). The local management of the basin and its physiographic 
characteristics were the basis of this division. 

Khoshnazar et al. (2021b) have shown that the WEAP-derived variables are reli-
able for drought assessment in the Lempa River basin. Our two previous papers 
describe more details of the validation and calibration procedure of the model (Khosh-
nazar et al. 2021a, 2021b). This is why we will refer to the WEAP-based WEPSI 
data as our actual data, hereafter called the observed data. 

We selected the soil moisture method to simulate the basin processes like evapo-
transpiration (Fig. 10.2 shows the conceptual diagram for this method) (Seiber and 
Purkey 2015). In this model, the water balance is calculated by Eq. (10.1) as follows 
(Khoshnazar et al. 2021b; Oti et al. 2020) (assuming that the climate is steady in 
each sub-basin). 

Rd j 
dZ1, j 

dt 
= Pe(t) − ETp(t)kc, j (t)

(
5Z1, j − 2Z2 

1, j 

3

)

− Pe(t)Z 
RRF j 
1, j − f j ks, j Z2 

1, j −
(
1 − f j

)
ks, j Z

2 
1, j (10.1)

where Z1,j is the relative storage based on the total effective storage of the root zone. 
Rdj is the soil holding capacity of the land cover fraction j (mm). ETp is calculated 
using the modified Penman–Monteith reference crop potential evapotranspiration 
with the crop/plant coefficient (kc,j). Pe is the effective precipitation, and RRFj is the 

runoff resistance factor of the land cover. Pe(t)Z 
RRF j 
1, j is indicated as the surface runoff. 

f j ks, j Z2 
1, j shows the interflow from the first layer, for which the term ks,j denotes 

the root zone saturated conductivity (mm/time); f j is the partitioning coefficient 
that considers water horizontally and vertically, based on the soil, land cover, and 
topography. Finally, the term

(
1 − f j

)
ks, j Z2 

1, j is percolation. 
WEAP uses Eq. (10.2) to calculate ETa (Khoshnazar et al. 2021b; Kumar et al. 

2018). 

ETa = ETp

(
5z1 − 2z2 2

)
3 

(10.2) 

where z1 and z2 are the water depth of the top and bottom soil layers (bucket), 
respectively (Fig. 10.2).
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Fig. 10.2 Conceptual diagram of water balance calculation in WEAP (Seiber and Purkey 2015)

We calculated monthly ETw with the WEAP-derived ETp and ETa following the 
procedure presented in Sect. 10.2.4.2. for each sub-basin. 

10.2.3 GLEAM Data 

The Global Land Evaporation Amsterdam Model (GLEAM) data provide ETp and 
ETa, among other variables (Martens et al. 2017; Miralles et al. 2011). We used 
the GLEAM v3.5a dataset in this research. This GLEAM version uses surface radi-
ation and near-surface air temperature from the latest reanalysis of the European 
Center for Medium-Range Weather Forecasts (ECMWF)-ERA5, i.e., a combination 
of gauge-based reanalysis and satellite-based precipitation and vegetation optical 
depth. GLEAM datasets are provided within a monthly temporal.
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We calculated the catchment-wide ETp and ETa for each sub-basin, where the 
actual and potential ET values of each sub-basin are obtained from the average 
values of all cells within the sub-basin on a monthly basis. Then, ETw was computed 
with the procedure presented in Sect. 10.2.4.2. 

10.2.4 The Wet-Environment Evapotranspiration 
and Precipitation Standardized Index (WEPSI) 

10.2.4.1 WEPSI Calculation 

As discussed, we have employed Wet-environment Evapotranspiration and Precip-
itation Standardized Index (WEPSI) for our drought assessment and monitoring. 
WEPSI is calculated as follows (Khoshnazar et al. 2021a): First, a long-term (at 
least 30 years) dataset of monthly water shortage (Eq. 10.3) is employed, and then, a 
time scale (aggregation period) is determined (can be 3, 6, 9, 12, 24, or 48 months). 
Then, the aggregated WS is fitted to a distribution function. In the next step, the 
cumulative probability function is equal to that of the normal distribution, for which 
the standardized variable with zero mean and unity standard deviation is obtained. 
As Khoshnazar et al. (2021a) suggest, we used the three-parameter log-logistic LL3 
distribution to fit WS in WEPSI’s calculation. 

WS is the difference between precipitation (water supply) and wet-environment 
evapotranspiration (water demand) (Eq. 10.3). 

WS = P − ETw (10.3) 

Table 10.1 shows the drought categorical classification for WEPSI. This index 
categorizes the situation in eight classes, from extreme drought to extreme wet. 

Table 10.1 Drought 
categorical classification 
using WEPSI (Khoshnazar 
et al. 2021a) 

WEPSI value Drought/wet category 

≥2 Extreme wet 

1.5 to 2 Severe wet 

1 to 1.5 Moderate wet 

0 to 1 Low wet 

−1 to 0 Low drought 

−1.5 to −1 Moderate drought 

−2 to  −1.5 Severe drought 

≤−2 Extreme drought
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10.2.4.2 ETw Calculation 

We used the methodology described by Khoshnazar et al. (2021a) for obtaining 
ETw. As the reference suggested, a so-called complementary relationship (CR) is 
employed to relate ETw, ETp, and ETa. Kahler and Brutsaert (2006) suggested a 
general form for CR (Eq. 10.4). 

(1 + b) ETw = bETa + ETp (10.4) 

where b is an empirical constant, ETa, ETp, and ETw are actual, potential, and wet-
environment evapotranspiration, respectively. 

The symmetric CR considered by Bouchet is obtained by taking b = 1 in 
Eq. (10.4). However, the literature indicates that b generally exceeds and rarely 
is equal to 1, i.e., CR is asymmetric (Aminzadeh et al. 2016). Consequently, for the 
ETw calculation, in addition to ETp and ETa, it is necessary to estimate the value of 
b. 

Equation (10.4) can be rewritten in terms of b as follows (Aminzadeh et al. 2016). 

b = 
ETp − ETw 

ETw − ETa 
(10.5) 

Equation (10.5) shows that the increase of ETp above the ETw is proportional 
to the energy flux provided by surface drying and the decrease of evaporation rate. 
Normalizing Eq. (10.5) results in Eqs. (10.6) and (10.7) (Aminzadeh et al. 2016). 

ETa+ = 
(1 + b) ETMI 

1 + b ETMI 
(10.6) 

ETp+ = 
1 + b 

1 + b ETMI 
(10.7) 

where ETa+ = ETa 
ETw 

, ETp+ = ETp 

ETw 
, ETMI = ETa 

ETp 
, and ETMI is the surface mois-

ture index (with a maximum of 1). ETa+ and ETp+ are scaled actual and potential 
evapotranspiration, respectively. 

To facilitate the calculation of the CR, Aminzadeh et al. (2016) suggested an 
atmospheric input-based equation for calculating b (Eq. 10.8). 

b = ARS,net + B (10.8) 

where RS,net is the net shortwave radiation flux in Wm−2. RS,net is calculated with the 
incoming shortwave radiation flux RS and the surface albedo α as RS,net = (1 − α)Rs. 

A is a function of wind speed ua (in m S−1) (Eq.  10.9). 

A = (3ua + 2) × 10−3 (10.9)



10 Applicability of the Global Land Evaporation Amsterdam … 205

Finally, the B parameter is calculated as a function of wind speed (ua) and vapor 
concentration [ca(kg m−3)] (Eq.  10.10). 

B = (24.3ua − 1.44)
(
ca + 22 × 10−3

) + 0.3 (10.10) 

To calculate b by Eq. (10.8), RS,net, ua, and ca are required, which can be obtained 
from meteorological measurements, literature, or empirical equations. However, ETw 

could be obtained from other sources or models. Khoshnazar et al. (2021a) proved that 
the mentioned methodology is more proper. As we do not confront data availability 
restrictions, we have followed their suggested path. 

10.2.5 Experimental Setup 

10.2.5.1 WEPSI Calculation at Catchment Scale 

The implementation of the WEPSI drought indicator is investigated in the case study 
of the Lempa River basin. We estimated WEPSI for each of the river’s sub-basins 
(Sect. 10.2.1). ETw is calculated using Eq. (10.4). For each sub-basin, the b param-
eter is estimated using wind speed (ua), net shortwave radiation RS,net, and vapor 
concentration (ca). 

El Salvador’s Ministry of Environment and Natural Resources (MARN) provided 
the meteorological data ua, RS,net, and ca (El Salvador’s Ministry of Environment and 
Natural Resources (MARN) 2019a). To calculate b, we first compute the monthly 
averages of ua, RS,net, and ca for eight sub-basins. Then, we plug the values of each 
three input variables into Eq. (10.8) to get 12b values for each month and each 
sub-basin (Khoshnazar et al. 2021a). 

We used the time series of WEAP-derived ETp and ETa (Sect. 10.2.2) as Eq.  (10.4) 
inputs to determine ETw in each sub-basin once b was calculated. Finally, we 
calculated WEPSI using the catchment-wide P and ETw. 

10.2.5.2 Eligibility of a Global Remotely Sensed ET Dataset for Local 
WEPSI Applications 

In order to extend the use of WEPSI in other applications, it is necessary to have ETw, 
which can be calculated through an approach similar to that presented in Sect. 10.2.2. 
Another option is through the use of global remotely sensed ET databases. In this 
sense, this part of the methodology is allocated to analyze the suitability of using 
global ET datasets to calculate WEPSI. The procedure involves two steps: (1) ETw 

comparison and (2) the GLEAM-based WEPSI performance evaluation.
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First, we extracted the catchment-wide ETp and ETa from the GLEAM dataset for 
each sub-basin. After that, we used the parameter b calculated in Sect. 10.2.4.2. to  
compute ETw by Eq. (10.4). Then, we compared GLEAM- and WEAP-based ETw by 
applying the following three commonly used metrics: the coefficient of determination 
(r2), Kling-Gupta efficiency (KGE), and the percentage bias (PBIAS). The coefficient 
r2 is calculated with Eq. (10.11). 

r2 = 

⎛ 

⎝ 
Σn 

i=1(xi − x)(yi − y)/Σn 
i=1(xi − x)2 

Σn 
i=1(yi − y)2 

⎞ 

⎠ 
2 

(10.11) 

where xi and yi indicate the reference variable and the variable to compare, respec-
tively, and x and y indicate the mean of each of them. KGE and PBIAS are obtained 
from Eqs. (10.12) and (10.13), respectively (Odusanya et al. 2019). 

KGE = 1 −
/

(r − 1)2 + (α − 1)2 + (β − 1)2 (10.12) 

PBIAS = 100 
Σn 

i=1(xi − yi )Σn 
i=1 xi 

(10.13) 

where xi and yi indicate the reference variable and the variable to compare, respec-
tively, α is the ratio between the standard deviation of the variable to compare and 
that of the reference variable (α = σ y/σ x). Finally, β is the ratio between the mean 
of the variable to compare and that of the reference variable (β = y/x). 

Second, after comparing ETw, we calculated catchment-wide WEPSI with 
GLEAM-based ETw. The difference between GLEAM- and WEAP-based WEPSI 
is the input ETp and ETa. With the time series of GLEAM-based WEPSI calculated 
in each sub-basin, we computed the time series of percentage of drought area (PDA) 
for the entire basin (Diaz et al. 2019). PDAs were calculated on a monthly basis as 
the ratio between the area of sub-basins in drought and the total area of the basin. 
A drought event starts once the drought index value comes below a threshold and 
ends as the value rises above the threshold again (Brito et al. 2018; Corzo Perez et al. 
2011; Diaz et al. 2020). The threshold used in this application was drought index = 
−1, which is a threshold commonly employed in drought assessments (Diaz et al. 
2020; Khoshnazar et al. 2021b). 

10.2.5.3 Categorical Evaluation Statistics 

Categorical validation techniques are vastly used for comparison or validating satel-
lite data in the literature (Mayor et al. 2017; Sharifi et al. 2016; Yong et al. 2016). 
After calculating GLEAM- and WEAP-based WEPSI in the eight sub-basins, we 
employed three metrics using Table 10.2, as follows (Sharifi et al. 2016).
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Table 10.2 Contingency table to evaluate drought occurrence by GLEAM data (Sharifi et al. 2016) 

GLEAM-based (estimated) drought 

WEAP-based (observed) drought Yes No Total 

Yes Hits (a) Misses (c) a + c 
No False alarms (b) Correct negative (d) b +d 

Total a + b c + d Total 

The first applied categorical metric is the false alarm ratio (FAR), which indicates 
the fraction of estimated events that did not occur, and its ideal score is zero. FAR is 
calculated by Eq. (10.14). 

FAR = b 

a + b 
(10.14) 

The second employed metric is the probability of detection (POD), which deter-
mines the fraction of the observed events correctly estimated. The best score of POD 
is one, and it is obtained from Eq. (10.15). 

POD = 
a 

a + c 
(10.15) 

The third one is accuracy or fraction correct (FC), which measures the fraction of 
correct estimates, while its perfect score is one. FC is calculated using Eq. (10.16). 

FC = 
a + d 
total 

(10.16) 

10.3 Results and Discussion 

10.3.1 WEPSI Calculation and Performance Evaluation 

For the Lempa River basin, Khoshnazar et al. (2021a) have calculated parameter b in 
their research. They proved, compared to the symmetric CR, b > 1 leads to a consider-
able difference between the scaled evapotranspiration (ETa+ and ETp+) as the surface 
dries and actual evapotranspiration decreases (Aminzadeh et al. 2016). They also 
highlighted the importance of using local meteorological data (net shortwave radi-
ation, wind speed, and vapor concentration) that can lead to a better approximation 
of CR, and consequently, ETw. 

They also showed that WEPSI06 (i.e., WEPSI for the time step of 6 months) and 
SRI06 (i.e., SRI for the time step of 6 months) are most related in terms of low 
flows in the basin. Accordingly, they consider WEPSI06 as the representative of the
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agricultural and hydrological drought conditions in the basin that means WEPSI06 
reflects a realistic vision of the basin that links meteorological, agricultural, and 
hydrological drought. Accordingly, we employed WEPSI06 in our investigation to 
check the GLEAM data applicability. 

10.3.2 Eligibility of a Global ET Dataset for Local WEPSI 
Applications 

As discussed, we considered the WEAP-based data as our observed data. 
Figure 10.3a–c displays the r2, KGE, and |PBIAS| between the GLEAM- and 
WEAP-based ETw in the eight sub-basins of the Lempa River basin, respectively. 
As Fig. 10.3a shows,  r2 is more than 0.65 in the whole Lempa River basin. KGE 
satisfies the values larger than 0.5 all over the region, while more than 60% of the 
area has KGE > 0.55. On the other hand, |PBIAS| is lower than 16% among the 
whole basin, while more than 60% of the area has a value lower than 10%. 

Two sub-basins (Lempa2 and Suquioyo) have a value between 10 and 15%, and 
just Guajillo sub-basin has a value higher than 15% (but lower than 16%), which 
means the PBIAS results are acceptable (Odusanya et al. 2019).

Lempa 1 

SS3 

Acelhuate SS6 

Suquioyo 

Lempa 2 

Lempa 3 
Guajillo 

r2 < 0.5 

0.5 < r2 < 0.65 
0.65 < r2 < 0.7 

r2 > 0.7 

Lempa 1 

SS3 

Acelhuate 
SS6 

Suquioyo 

Lempa 2 

Lempa 3Guajillo 

Lempa 1 

SS3 

Acelhuate 
SS6 

Suquioyo 

Lempa 2 

Lempa 3 
Guajillo 

(a) (b) 

(c) 

Fig. 10.3 Comparison of GLEAM- and WEAP-based ETw in the sub-basins of Lempa River basin: 
a the coefficient of determination (r2); b the Kling-Gupta efficiency (KGE); and c the percentage 
bias (PBIAS)
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Generally, results depict that GLEAM-based ETw is relatively similar to WEAP-
based ETw based on the three performance metrics, which indicates that GLEAM-
based ETw data can be used for local WEPSI applications (Odusanya et al. 2019). 
Results show that the GLEAM ET dataset can facilitate the global computation of 
WEPSI, where the lack of data is not a limitation and modeling is not required.

Figure 10.4a–h compares the time series of GLEAM- and WEAP-based WEPSI06 
in the eight sub-basins of the Lempa River basin for the period 1980–2010 (31 years).

In general, the time series of both WEPSI06 are similar. Figure 10.4 concludes that 
for the GLEAM-based WEPSI06, the longest drought (i.e., the number of months 
that the value of WEPSI is below the threshold of −1) occurs in 2003, in general. The 
maximum drought frequency (3.54%) occurs in Guajillo, SS6, and Suquioyo sub-
basins, with 13 total numbers of droughts over 31 years. The most severe drought (i.e., 
the aggregation of WEPSI values in sequent months at drought) occurs in Guajillo 
in December of 1994. These results that are obtained using the threshold of −1 as  
the onset of drought are similar to Khoshnazar et al. (2021a) investigation, which is 
based on WEAP data. 

Figure 10.5 depicts WEAP- and GLEAM-based drought identification and differ-
ences between the two datasets in the eight sub-basins [a sub-basin is in drought 
if WEPSI06 ≤ 0 (Table 10.1)]. The employed threshold for drought onset (i.e., 0) 
provides more details about differences and consequently is a more suitable measure 
for accuracy assessment (compared to other lower thresholds, e.g., −1).

These data are used to obtain the three categorical metrics over the sub-basins 
(Table 10.3).

Table 10.3 contains amounts of categorical metrics as well as the mean elevation 
of each sub-basin. As the results suggest, Guajillo and Lempa3 have the highest 
values of POD and FC, respectively. These sub-basins have the highest average of 
elevation as well. On the other hand, Lempa2, which has the lowest mean elevation, 
faces the lowest values of POD and FC simultaneously. 

FAR values do not show a direct relationship with the mean elevation of sub-
basins. Among the eight sub-basins, Acelhuate and Lempa1 send the lowest false 
alarms, while SS6 and SS3 send more false alarms of drought based on GLEAM 
datasets. 

Figure 10.6 displays the variation of drought areas through the PDAs in the Lempa 
River basin (whole area) for the overall 31 years based on GLEAM- and WEAP-
based WEPSI06. The threshold of 0 was used to calculate drought in each WEPSI 
time series too.

As the figure shows, using the zero threshold as the onset of drought concludes the 
majority of times with the availability of drought. However, usually, the threshold of 
−1 is employed to this order, which provides more sensible results (Khoshnazar et al. 
2021b). We have used our threshold to capture more phenomena for the comparison 
and therefore calculate more reliable continuous and categorical metrics for eligibility 
of GLEAM-based data. The result shows a correlation more significant than 0.85 
between GLEAM- and WEAP-based PDA in November, February, July, August, and 
September. This is while March, April, and December have the lowest correlation 
coefficient values (all values are bigger than 0.6).
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Fig. 10.4 Annual time series of GLEAM- and WEAP-based WEPSI06 in the sub-basins. a 
Acelhuate, b Guajillo, c Lempa1, d Lempa2, e Lempa3, f SS3, g SS6, and h Suquioyo
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Fig. 10.5 WEAP- and GLEAM-based drought identification (i.e., WEPSI06 ≤ 0) and their differ-
ences, in the eight sub-basins: a Acelhuate, b Guajillo, c Lempa1, d Lempa2, e Lempa3, f SS3, 
g SS6, and h Suquioyo (The figure illustrates the situation of each sub-basin in 12 months of the 
year from 1980 to 2010. The situation is either white if two datasets are the same, blue if just the 
GLEAM-based ETw determines a drought, or yellow if just the WEAP-based ETw determines a 
drought. The red cells identify a drought)
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Table 10.3 FAR, POD, and FC categorical metrics, and mean elevation of eight sub-basins 

FAR POD FC Mean elevation (masl) 

Acelhuate 0.15 0.84 0.84 585 

Guajillo 0.16 0.88 0.86 926 

Lempa1 0.15 0.84 0.84 775 

Lempa2 0.17 0.81 0.82 505 

Lempa3 0.17 0.86 0.85 1162 

SS3 0.19 0.84 0.82 540 

SS6 0.18 0.83 0.82 616 

Suquioyo 0.17 0.84 0.83 574

Fig. 10.6 Percentage of drought area (PDA) employing WEPSI06 based on GLEAM and WEAP 
data in the Lempa River basin from 1980 to 2010

August and September also have the lowest percentage of mean absolute error 
between the two compared PDAs (3.9 and 5.4%, respectively), while March and April 
face the highest percentage of mean absolute error (11.1 and 12.4%, respectively). 

Obtaining evapotranspiration from classic methods or simulations is usually 
computationally expensive, as it needs many inputs such as hydrometeorological, 
soil, and vegetation data. Global RS ET datasets can resolve the challenge of 
retrieving ET data. Further evaluation that includes more basins and other global
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ET databases is required. However, based on the results, a good performance is 
expected from WEPSI. 

10.4 Conclusions 

The Wet-environment Evapotranspiration and Precipitation Standardized Index 
(WEPSI) was employed in this study, which takes water shortage (WS) as its input. 
Precipitation (P) and wet-environment evapotranspiration (ETw) are used to calcu-
late WS. WEPSI was put to the test in the Lempa River basin, Central America’s 
longest river. 

For modeling with the Water Evaluation and Planning system (WEAP), the basin 
is divided into eight sub-basins. ETw is calculated using WEAP’s ETp and ETa. 
In order to facilitate WEPSI’s application in other basins, we tested a global ET 
dataset for ETw calculation. We used the Global Land Evaporation Amsterdam 
Model (GLEAM) ETp and ETa to calculate ETw. GLEAM- and WEAP-based ETw 

were compared with r2, the Kling-Gupta efficiency (KGE), and the percentage bias 
(PBIAS). As the categorical metrics, we also used probability of detection (POD), 
false alarm ratio (FAR), and fraction correct (FC). The metrics reflect an accept-
able similarity between these two datasets. Additionally, GLEAM- and WEAP-
based WEPSI shows considerable similarities. These results indicate that WEPSI 
can be used in combination with global ET datasets for local drought assessments. 
Employing remotely sensed data (e.g., GLEAM), WEPSI could be calculated world-
wide and under various climates and can provide a spatial and temporal depiction of 
drought variation. 

Finally, drought events calculated with GLEAM-based WEPSI were compared. 
Results indicate that WEPSI that is also helpful for agricultural drought assessments 
(Khoshnazar et al. 2021a) could be calculated using GLEAM-based data. 

This research’s outcomes come in handy for the researchers and policymakers 
in drought calculation, monitoring, risk assessment, and forecasting. As a future 
research direction, we suggest using remote sensing-based WEPSI in other case 
studies and with other purposes. 
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Chapter 11 
Remote Sensing-Based Estimation 
of Shallow Inland Lake Morphometry: 
A Case Study of Sambhar Salt Lake, 
Ramsar Site-464, India 

Kartar Singh, Mili Ghosh Nee Lala, Shubha Rani Sharma, Ashutosh, 
Gaurav Chandra, and Anand Prakash 

Abstract Lake morphology has been identified as a key factor for the understanding 
of lacustrine systems. Notably, the morphometric descriptors have been viewed as 
factors controlling lake productivity due to light penetration, oxygen distribution, 
heat balance, nature of the sediments, and littoral zone development. The overarching 
goal of this study is to explore the ecological knowledge of HSAS—‘Hypersaline-
Alkaline Shallow Lake,’ through the determination of selected morphometric param-
eters. Despite their ubiquity and significance, however, inland HSAS lakes are gener-
ally less studied than freshwater lakes. Therefore, quantifying morphometry for these 
inland lakes is quite important, which has implications for their ecology and manage-
ment. Lake morphology is quantified with morphometric metrics that are descriptors 
of the form and size of lake basins. Geospatial technology is becoming important 
to process and analyze morphometric metrics. To perform this analysis, spatiotem-
poral Landsat Multispectral Scanner System (MSS) and Operational Land Imager 
(OLI) Imagery have been used. These satellite images have been atmospherically 
corrected using Improved Dark Subtraction (IDOS) method, and based on Normal-
ized Difference Water Indices (NDWI), the lake water surface extent was extracted
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for further analysis. For lake water depth measurements, demanding field measure-
ments were taken using GPS receiver and other morphometric measurements were 
estimated using ‘Håkanson morphometry’ manual. This lake has been morphome-
trically assessed for the years 1975 and 2015. As a result, the drastic changes have 
been observed in its morphometrical dimensions. For the year 1975, this lake can 
be characterized as a shallow, convex, and intermediate type hypersaline-alkaline 
endorheic lake. In addition, for the year 2015, this lake behaves as an extremely 
shallow, concave, and small hypersaline-alkaline endorheic lake system. This anal-
ysis provides crucial knowledge in support of approaches to lake management. This 
study is based on only two distinct years, i.e., 1975 and 2015; if similar morphome-
trical analysis can be performed for a long time period, then characteristics of this 
lake can be defined in a more illustrative and descriptive way. 

Keywords Sambhar lake · Morphometry · Geospatial · Lake management 

11.1 Introduction and Background 

11.1.1 Why Lake Morphometry? 

Lake morphometry (LM) affects nearly all transport processes in lake systems 
(i.e., resuspension, sedimentation, burial, diffusion, mixing, and outflow). Thus, LM 
controls concentrations of contagions in water and sediments and hence ecosystem 
properties related to such biochemical concentrations. In general, these lake processes 
are obvious and applicable to all type of substances. Therefore, LM regulates the 
concentration of nutrient that affects the lake primary production (phytoplankton 
biomass) and secondary production (i.e., zooplanktons and zoobenthos). Particu-
larly, the morphometry reflects the physical as well as biogeochemical condition of 
the lake under consideration. In this chapter, the values of morphometrical variables 
have been calculated for the years 1975 and 2015, which depict the changes occurred 
in the Sambhar Lake (SL) during last 40 years. In addition, this work also assesses the 
SL characteristics and helps to understand the lake processes with particular interest 
of shallow lake system research. In case of the SL, lacking of field-based reference 
data makes this study limited to conduct the traditional methods of wetland condition 
assessment in this area. The standard lake morphometric parameters have been used 
to assess the lake temporal condition.
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11.2 Significant Literature Inferences About Importance 
of Lake Morphometry 

Several limnological processes, including production of biomass in lake ecosys-
tems, e.g., autotrophic and heterotrophic, are interrelated to the morphometry of 
an aquatic system (Fee 1979; Jenkins 1968; Olson  1979; Rawson  1955; Ryder 
1965). Significantly, the foraging pattern of waterfowl’s is related to the morpho-
metric features of the inland lake system. LM affects the top surface water volume 
(epilimnion) and rate of resuspension or water mingling and, thus, can be have a 
significant impact on overall lake trophic state (Imboden and Wüest 1995; Wetzel 
2001). The discrepancies in lake productivity due to the morphometry of the lake 
basin vary with time and geographical space. Rawson (1955) stated that the morpho-
metric features play decisive role in determining the lacustrine biomass efficiency. 
Essentially, in extremely shallow inland lakes, the morphometric dimensions and 
microclimate affect the biomass productivity by influencing the sun light conditions. 
The wind-driven effects, e.g., resuspension of sediments, possibly reduce the water 
transparency and increase the turbidity in the lake. Nonetheless, at the same time the 
processes related to the lake ‘microbial loop’ exist that accelerate the internal regen-
eration of the nutrient pool. However, every morphometric parameter has its own 
importance, but the water surface area, mean depth, and their ratios, and shoreline 
development directly influence the degree of lake productivity. The morphometric 
properties of a lake represent the overall condition of the basin area. The regional 
climate and morphometry of the lake ecosystem determine the water fluctuation in 
the lake basin, which further regulates the nutrient loading. Notably, LM also deter-
mines the mixing of the water column, which is considered as a crucial factor for the 
lake metabolism. 

A thorough limnological and morphometric research about the lake system is 
indispensable because it includes the parameters related to its genesis and hydrology 
and thus explains interrelation of the physical processes (Florin et al. 1993; Håkanson 
1981). Additionally, the morphometry of a lake system also reflects the biogeochem-
istry of a lacustrine ecosystem (Trolle et al. 2010). Thienemann (1925) and Neumann 
(1932) stated that the basin morphometry directly affects the lake metabolism. Several 
pioneering studies have been conducted in the field of limnology, e.g., (Fee 1979; 
Kendra and Singleton 1987; Khare et al. 2008; Moses et al. 2011; Rai et al. 2006) 
which reflects the importance of basin morphometry into the regularization of the 
physical, chemical, and biological processes of the lake system. The effect on biomass 
productivity of the lake (Duarte and Kalff 1988; Pinel-Alloul et al. 1990; Schindler 
1971), nutrient dynamics, e.g., nitrogen and phosphorous ratio (Pick and Lean 1987; 
Smith 1982), thermal stratification and light climate (Robertson and Ragotzkie 1990; 
Sterner 1990), and sediment loading (Blais and Kalff 1995; Eloranta 1986) are  some  
of the important works related to the morphometrical analysis. The cartography, 
morphometry, and bathymetry play a pivotal role in wetland studies (Carpenter 1983).
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The aim of this chapter is to assess the SL condition and processes using morpho-
metrical analysis based on integrated remote sensing approach. This work helps to 
answer some fundamental research questions associated with the SL morphometry. 
These research questions are as follows: 

(a) What is the need and significance of morphometric analysis of the HSAS lakes? 
(b) How the morphometry influences the overall lake productivity? 
(c) What spatiotemporal changes have occurred in the SL morphometry from 1975 

to 2015? 
(d) How the remote sensing-based morphometry analysis is important to assess the 

fundamental characteristics of the SL? 

11.3 Material and Methods 

11.3.1 Study Area—General Description 

The SL is situated at 26° 58' N, 75° 05' E, with having nearly elliptical shape with 
its major axis in northeast to southwest direction (Fig. 11.1). 

Fig. 11.1 Location of the study area
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The maximum area of this lake lies within Jaipur district and remaining exists in 
Ajmer and Nagaur (Rajasthan, India). Remarkably, the lake catchment covers four 
districts of Rajasthan state (i.e., Jaipur, Nagaur, Sikar, and Ajmer), with total area 
of 7560 km2. The regional population is mostly dependent upon rainfed agriculture, 
animal husbandry, and salt mining activities. The SL is one of the major commercial 
salt manufacturing sites in India with approximately two lakh tons of raw salt and 
40,000 MT processed salt production every year, which is planned to increase up 
to 10 lakh Tons per Annum (TPA) by the end of 2019–20. This lake has a great 
potential for production of valuable chemical compounds (i.e., sulfate of potash, 
[type of substitution fertilizer]), value-added bromine (Br) derivatives, opportuni-
ties of solution mining, derivatives of magnesium chloride, production of packaged 
drinking water through industrial reverse osmosis, and production of β-carotene at 
industrial scale. In addition, The SL has possibilities for different tourism activities 
(i.e., heritage, rural, cultural, bird watching, religious), with aquaculture prospects. 

The SL bed height varies from 360 to 365 m (a.m.s.l), and its water surface area 
varies from few km2 to ~230 km2, subjected to amount of water receiving from inlets 
and mean rainfall in a particular season. The SL is having ~22.5 km length and 3.5– 
11 km width in its geographical extent with 0.60 m and 3 m of mean to maximum 
water depth, respectively. Importantly, this lake is a playa depression surrounded 
by scattered ‘Aravali’ hills in its northwest and west basin area. This lake has two 
major lifelines named the ‘Rupangarh’ in the southwest and the ‘Mendha’ river in the 
northeast; unfortunately, due to extensive growth of settlements and industrial units, 
water flow of these ephemeral rivers has been restricted. The hypersaline-alkaline 
nature of this lake is a matter of geoscientific discussion, but presently it has been 
considered that the amount of soluble sodium salts in the lake water is due to the 
chemical weathering of surrounding hillocks. 

In the SL region during summer, the maximum temperature ranges from 40 to 
47 °C, whereas in winters, the temperature lies between 2 and 11 °C. One of the key 
characteristics of the SL region is the excessive temporal inconsistency in precipita-
tion events; the meteorological records of this region show large fluctuation in rain-
fall, temperature, and humidity conditions. Consequently, this lake is facing scarcity 
of rainfall, resulting in the decline in migratory waterbirds and rapid depletion in 
groundwater. This playa is one of the Ramsar wetlands (Site-464) and also known as 
Important Bird Area (IBA, IN-RJ-16). The SL facilitates the vital breeding ground 
for thousands of migratory flamingos and other aquatic animals. In past years, due to 
degraded condition of this lake the flamingo population has declined from thousand 
to less than hundreds. This HSAS Lake has a rich biological diversity with variety of 
zoobenthos, primary producers, and waterfowls, which shows the seasonal fluctua-
tion with changes in % salinity. In general, the SL gives dark green appearance due to 
rapid growth of blue-green algae (i.e., Nostoc, Anabaenopsis, Anabaena, Dunaliella, 
and Arthrospira) and occurrence of diatom species (i.e., Cosmarium, Closterium). 
The zooplanktons (i.e., Brachionus, Cyclops, Moina, and Diaptomus), occur in the 
lake during low salinity conditions. In the shoreline and catchment areas, the occur-
rence of typical arid and semiarid vegetation with bushes can be observed (i.e., A.
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Table 11.1 Metadata information of the satellite images used in this study 

S. No. Type of sensor Scene ID Path/row Date of acquisition 

1 Landsat MSS LM21590411975314AAA05 159/41 10/11/1975 

2 L8-OLI, C1/L1 LC81480412015361LGN00 148/41 27/12/2015 

indica, P. juliflora, A. senegal, A. pendula, B. serrata, A. nilotica, D. sissoo, S. persica, 
and P. cineraria). 

In present work, the Landsat satellite images of the year 1975 and 2015 have been 
considered as reference or base image and current image for the SL morphometry 
analysis, respectively. The metadata information of these satellite images is provided 
in Table 11.1. 

In the year 2015, the reservoir side of the SL is not considered for the morphometry 
analysis because it has been hypothesized that the anthropogenic modifications in 
the natural settings of the SL can significantly affect the morphometric dimensions 
of this lake (Fig. 11.2c). 

The main lake water flow is diverted to the reservoir side, which is completely 
under control. Additionally, the SL consists of numerous salt production activities; 
hence, the area associated with these activities has not been considered for further 
analysis in this work. The muddy areas of the main lake also have not been consid-
ered for this study, because these areas not significantly have an impact on overall 
morphometry of the lake (Fig. 11.2b).

Fig. 11.2 Landsat 8 OLI imagery of the SL area of December 2015; a maximum depth zone; b 
part of main lake, in muddy condition; and c the reservoir side, which has been separated from the 
main lake by constructing a ~5-km-long dam 
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Fig. 11.3 Landsat image of the year 2015 of the SL area, a including reservoir side and b without 
reservoir side, and showing water depth locations measured during fieldwork

Figure 11.3 shows the actual lake area considered for the morphometric analysis 
for the year 2015. Similarly, for the year 1975 the reservoir side has not been taken 
into consideration for morphometry analysis (Fig. 11.4). 

11.3.2 Image Preprocessing 

The satellite data used in this study are L1T products, which provide a good geometric 
accuracy < 0.5 pixel by incorporating ground control points and geodetic accuracy, 
and further rectifications are not required for co-registration process of the Landsat 
images. To maintain the homogeneity of spatial scale or pixel size, the resampling 
process was performed on the MSS image using ERDAS Imagine software tools that 
changed the pixel size from 60 to 30 m. The L8-OLI and MSS images, obtained in 
the form of DNs, were converted to the true planetary surface reflectance (ρλ) using  
the following equation. 

ρλ = π [(Lsat − Lhaze)/Eo cos TZ] (11.1) 

where π = 3.14, Lsat stands for sensor radiance, Lhaze represents the atmospheric 
path radiance, Eo is the mean solar exo-atmospheric irradiance, and TZ stands for 
solar zenith angle.
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Fig. 11.4 Landsat image of the year 1975 of the SL area, a including reservoir side and b without 
reservoir side. Red line in a indicates location of dam construction, which divides the lake into two 
parts: main lake area and reservoir area

Accurate and reliable atmospheric correction for inland water imagery is still 
an unsolvable problem. The simple dark object subtraction (DOS) method assumes 
that the aerosol type and size distribution do not alter over the distance from which 
the dark pixel is selected. This assumption has been demonstrated to be applicable 
for various studies. Therefore, it can be concluded that the simple DOS method is 
very simple and feasible to be used with no fatal disadvantages. Notably, the DOS 
corrected the small inconsistencies of atmospheric conditions for the area under 
consideration. 

11.3.3 Extraction of Water Surface 

The Normalized Difference Water Index (NDWI) layers were generated using the 
modeler function in ERDAS Imagine software. The formula for NDWI is given below 
(McFeeters 1996). 

NDWI = 
Reflectancegreen − Reflectancenir 
Reflectancegreen + Reflectancenir 

(11.2)
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Several methods are available that may be applied to extract open water features 
in satellite images with improved accuracy (i.e., emitted thermal radiation, reflected 
solar radiation, and active microwave emission, etc.). Simply, the use of two-band 
ratio (i.e., NDWI) is an effective way to delineate the lake water surface. NDWI 
uses the NIR band because water strongly absorbs the NIR wavelength radiation 
and appears as dark on remote sensing image. Conversely, dry soils and terrestrial 
vegetation strongly reflect the NIR radiation. In addition, the green band maximizes 
the light reflected in green wavelength. NDWI takes advantage of high reflectance 
of near infrared light from land portion and low reflectance from water surface. 

11.3.4 Calculation of the Lake Morphometric Parameters 

11.3.4.1 Lake Water Surface Area (a), Shoreline Length (l0) 
or Perimeter (P), Maximum Length (Lmax), Maximum Width 
(Bmax), Mean Width (B), Maximum Depth (Dmax), and Mean 
Depth (D) 

The calculation of lake water surface area (LWSA) is an essential initial step for 
morphometry analysis. All other morphometrical parameters are well associated 
with LWSA. In case of SL, salt production, occurrence of migratory waterbirds, and 
other important management decisions are essentially based on water present in the 
main lake. 

The significance of getting an accurate assessment of LWSA cannot be over or 
underestimated. An inaccurate measurement of LWSA will inevitably lead to other 
problems in morphometrical dimensions. Finally, NDWI-based water surface area 
was calculated for the respective years using ERDAS software measurement tools. 
The lake boundary areas were cautiously observed to decide the accuracy of NDWI 
layer and digitization of the SL shoreline. With the help of ERDAS digitization tools, 
the SL shoreline was digitized and estimated as perimeter using measurement tools. 
Notably, at the time of digitization, the similarity of the spatial scale was maintained 
for both of the satellite images (i.e., 1975 and 2015). Figures 11.5 and 11.6 depict 
the shoreline measurement and associated parameters for the year 1975 and 2015, 
respectively. Dmax and D for the year 2015 have been determined using measured 
water depth during fieldwork (Fig. 11.7). For the year 1975, water depth mentioned 
in the peer-reviewed journal articles related to the SL has been considered for the 
analysis.

11.3.4.2 Lake Volume (V) and Volume Development Index or Form 
Factor (Vd) 

Lake volume is the total water volume of the lake system under consideration. Gener-
ally, bathymetric maps and hypsographic curves are used to estimate the lake volume, 
but for the SL these are not available. In this study, (V ) has been calculated using the
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Fig. 11.5 Satellite image of the year 1975 of the SL area; a lake area considered for the measure-
ment; b shoreline length measurement; c measurement of the maximum width (Bmax); and d 
measurement of the maximum length (Lmax)

formula given below: 

V = D × A (11.3) 

where D = mean depth and A or a = lake water surface area. 
The V d is a measure of departure of the shape of the lake basin from that of a 

cone, which has been calculated using the D and Dmax (Håkanson 2004). 

Vd = 3 × D/Dmax (11.4) 

where D = mean depth and Dmax = maximum depth. 
Significantly, the lake volume can be highly impacted by the total lake dilution, and 

it can be easily assessed by the lake dilution capacity which is directly related to the 
sediments or particles naturally occurring from the watersheds or from anthropogenic 
events.
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Fig. 11.6 Satellite image of the year 2015 of the SL area; a lake area considered for the measure-
ment; b shoreline length measurement; c measurement of the maximum width (Bmax); and d 
measurement of the maximum length (Lmax)

11.3.4.3 Shoreline Development Index (F) 

Shoreline development index (F) or margin irregularity index is quite important in 
inland water systems. Generally, the shorelines having the high (F) values or more 
irregularities provide prey rich littoral habitats. In this study, the (F) value has been 
calculated using the formula given below: 

F = P 

2 × 
√

π a 
(11.5) 

where P or lo = shoreline length or perimeter; π = 3.14; and a = lake water surface 
area.
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Fig. 11.7 Lake water depth measurement during fieldwork; a and b extreme shallow condition of 
the SL; c occurrence of algal scum near SL shoreline areas; and d dry and moist area of the lake

11.3.4.4 Dynamic Ratio (DR), Erosion-Transportation Area (ET), 
and Areas of Accumulation of Fine Sediments (A0) 

In shallow lakes, bottom dynamics is not very complex and influenced by prevalent 
wind conditions. DR determines the resuspension processes in lakes, which regulates 
the internal loading and sediment focusing. In this study, DR has been calculated as 
follows: 

DR = √
A/D (11.6) 

where A = lake water surface area (A = a) and D = mean depth. 
In lake contexts, it is common to emphasize on the sediment loading because 

the finer materials show the highest capacity to fix the pollutants easily (Thomas 
et al. 1972). In analyzing the lake bottom dynamics (erosion, transportation, and 
accumulation), these can be defined as follows: 

(A) Areas of erosion (E) are the areas of the water system where there is no evident 
deposition of fine sediment materials occur but, rather, transfer or removal of 
such materials. 

(B) Areas of transportation (T ) are the areas of the mixed sediments or the 
areas where fine sediment loads are periodically deposited. In general, these 
areas dominate where wind/wave action controls the lake bottom dynamics. 
Sometimes, it is arduous to isolate the areas of transportation from areas of 
erosion.
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(C) Areas of accumulation (Ao) are the areas of the soft bottom where the fine 
materials are deposited constantly. These are the areas, where possibility of 
occurrence of the concentrations of pollutants is high. 

In this study, the ET-areas have been calculated using the formula given below: 

ET = 0.25 × DR × 410.061/DR (11.7) 

where ET = the areas of the erosion and transportation and DR is the dynamic ratio. 
The Ao has been calculated using the formula given below: 

A0 = 100 − ET (11.8) 

where ET = the areas of the erosion and transportation. 

11.4 Results and Discussion 

11.4.1 Lake Water Surface Area (A) or (a) 

In general, the lake surface area is the primary morphometric feature, which provides 
the first insight of the existence of the water body. LWSA is one of the significant 
and fundamental morphometric features. It plays an important role in lake func-
tioning and size determination. In case of lakes, the proliferation of the biodiversity 
directly depends on the water surface area (Browne 1981). Thus, LWSA can be used 
as an indicative index for the habitat conservation in the important wetland areas. 
Generally, the lake storage represents the water quantity or capacity that sometimes 
depends on lake depth. In case of the SL, the complete lakebed is almost flat that 
limits the high storage capacity of this lake. Nonetheless, this lake is rich in its 
biomass content and physical habitats because this lake consists of extensive shore-
line areas rather than deepwater conditions. However, some areas in this lake receive 
comparatively high volume of water that moderately changes the storage capacity 
of this lake. This lake has no outlet, because it receives water from closed endorheic 
drainage system. Solar evaporation is mainly the way of water loss in this lake. The 
commercial salt production activities also use the main lake water as raw material. 
In 1972, the process of dam construction had been started which divided the lake 
into two unequal parts, i.e., reservoir and main lake. In this study, the 1975 satellite 
imagery has been used to assess the historical condition, so reservoir area has not 
been included for the evaluation of the morphometry. The rationale behind not to use 
the reservoir area in calculations was the prominent differences in water quality due 
to influence of man-made structures. 

In case of shallow lakes (i.e., SL), extent of water surface area may help to deter-
mine the potential impacts of wind circulations. In prevailing wind conditions, larger 
water surface area creates the larger waves, which positively affects the water column
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Table 11.2 Lake classification based on its total water surface area (Browne 1981) 

S. No. Surface area (km2) Class name 

1 >10,000 Very large 

2 1000–10,000 Large 

3 100–1000 Intermediate 

4 10–100 Small 

5 <10 Very small 

in mixing processes. Nevertheless, in SL, the wave base height is too less, but surface 
waves effectively mix the lake sediments. Instead of that, LWSA also influences the 
dilution capacity of the lake. In 1975, this lake consists of greater water surface area, 
which indicates the greater dilution capacity in comparison with LWSA of the year 
2015. Based on 1975 water surface area conditions, this lake can be categorized as 
an intermediate lake system, whereas for 2015 it comes under very small shallow 
lake class (Table 11.2). 

11.4.2 Maximum Length (Lmax) 

The straight line connecting the two most remote shoreline points of the lake defines 
Lmax. Exceptionally, this line can be curved, e.g., in oxbow lakes or in irregular basins. 
It may cross the islands, but may not cross the land. Lmax is significant in shallow 
lakes because it can influence the depth at which waves can mix water and/or bottom 
sediments. If a lake has no landform or island to disrupt the wind, then waves can 
easily mix the sediments. Generally, the larger the Lmax, the larger is the waves and 
greater the potential for sediment mixing in the lake water. For mixing phenomena, 
the orientation of the lake is also another consideration. This morphometric parameter 
has limited limnological use, but it has to be considered as a descriptive measure for 
shallow lakes. For the SL, in 1975, Lmax is larger than the year 2015 (Figs. 11.5 and 
11.6). The corresponding numerical values are provided in Table 11.6. 

11.4.3 Maximum Width (Bmax) and Mean Width (B) 

In limnological context, Bmax has an importance as a descriptive wetland measure. 
The straight line at the right angle to the Lmax defines the Bmax. This line also connects 
the two most remote shoreline points of the lake under consideration. It may cross the 
islands but not the land. The measured values of Bmax for 1975 and 2015 are provided 
in Table 11.6. The  B has been defined by the ratio of the lake area to the maximum 
length. Notably, these two morphometrical parameters have limited limnological 
value, but play an important role in several hydromechanical operations.
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11.4.4 Lake Water Depth (Maximum Depth Dmax) 
and (Mean Depth D) 

Dmax is the greatest known water depth of the lake. In this study, for the year 2015, 
Dmax has been determined based on field measurements (Figs. 11.7 and 11.8). For the 
year 1975, it has been determined based on the historical literature (Baid 1968; Jain  
2005; Jakher et al. 1990; Kumar 2008; Kulshreshtha et al. 2011; Mathur and Mathur 
2007; Roy and Smykatz-Kloss 2007; Roy et al. 2006; Sinha 2014; Sinha et al. 2004; 
Sinha and Raymahashay 2000, 2004; Sundaresan et al. 2006; Yadav 1997; Yadav and 
Sarin 2009a, 2009b). The lake mean depth is one the most valuable morphometric 
features because of its interrelationships with the overall lake productivity (Håkanson 
1981). The size, shape, and depth profile of a lake are the crucial factors affecting the 
water mixing, instead of that the microclimate, inlet areas, and shoreline structure 
determine the lake functions. The occurrences of biological processes and separation 
of water column zones are depending on the mean depth of the lake system. The low 
mean depth in the SL determines that this lake has high possibility for resuspension 
processes by large mixing events in bottom areas due to frequent wave actions. In 
addition, the low mean depth in SL leads to availability of adequate nutrients in water 
and consequently shows the great primary and secondary productivity in the lake. 

Additionally, Dmax is vital in contexts of lake function, particularly to describe 
V d of the lake. In lakes, the microbial pool can vary with variation in water depth; 
certainly, the biotic structure can differ in areas of Dmax of the lake than that of

Fig. 11.8 a Landsat 8 OLI image of the SL (December 27, 2015); b showing the ~ 5-km-long dam, 
areas of maximum depth, and two-gauge locations; c gauge location for the main lake water level 
monitoring; d gauge location for reservoir water level monitoring 
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the shoreline areas. The dissolved oxygen content may alter with depth variation, 
because the oxygen consumption is the highest in deeper areas. 

The SL is extremely shallow and the water is easily mixed due to prevalent wind 
effect; consequently, the oxygen concentration may impartially in steady condition. 
Conditionally, in the absence of effective wind velocity, the dissolved oxygen concen-
tration may decline in the lake water column. The SL does not form the layers because 
of its poor depth profile, though some areas may stratify of deep zones of the lake. 
Generally, in condition of ‘spring overturn’ the uniform water density permits the 
lake water to mix entirely, which reshuffles the bottom and surface nutrient condi-
tions. For this lake, the above process can be observed throughout the year, and 
this lake is not deep enough to stratify. The measured water depth values and their 
corresponding GPS locations are specified in Table 11.3.

11.4.5 Lake Volume (V) and Form Factor (Vd) 

In limnological context, volume of the lake is an important morphometrical measure, 
as it can influence a lake’s total dilution capacity. Evidently, lakes with high volumes 
of water have a greater potential to dilute the materials within its basin area. In 
addition, the dilution capacity must influence the nutritional concentrations of the 
lake microorganisms. Volume regulates the biochemistry of the lake, which leads to 
the formation of unique hydrobiological system for particular lake basin. In 1975, the 
SL conquered a high volume, which has possibly increased the dilution capacity of 
the lake. In 2015, the SL attains comparatively low volume that decreases the overall 
dilution capacity of this lake. The decreased dilution capacity of this lake also leads 
to more concentrated or salty water in the lake. 

V d is the ratio of volume of a lake to the volume of a cone with same water surface 
area and Dmax. It is called as lake’s form factor, because it illustrates the actual shape 
of the lake basin in terms of volume development. For most lakes, the value of V d is 
> 0.33, which is the value that would be calculated for a perfect conical depression. 
A very low  V d occurs only for lakes with deep holes. V d ranges from 1 to 1.5 for the 
lakes found in easily eroded geological conditions. For the SL in 2015, the V d ranges 
> 1.33, which is exactly 2.562. In 2015, the SL forms a ‘concave’-shaped basin 
and lies in the last morphometrical class in terms of its volume development (Table 
11.4). Technically, it is possible because in 2015, the SL consists comparatively small 
water surface area. In 1975, this lake has a low V d value, which is 0.6 and lies in the 
‘convex’ shape class. Clearly, the lake depth and water surface area are the possible 
governing factors to form the shape of the SL basin.
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Table 11.3 Measured water depth of the SL and their corresponding geographic locations (Date 
of measurement—December 27, 2015) 

S. No. Latitude (N) Longitude (E) Water depth (cm) 

1 26.927713 75.10887 5.0 

2 26.927846 75.108295 4.5 

3 26.928171 75.107889 4.7 

4 26.928749 75.107929 5.8 

5 26.929175 75.108364 5.9 

6 26.929516 75.108514 6.3 

7 26.92998 75.108455 6.5 

8 26.9304 75.108067 6.9 

9 26.930621 75.107319 6.0 

10 26.931139 75.106714 6.3 

11 26.931887 75.107016 6.1 

12 26.932274 75.107129 6.5 

13 26.932849 75.107063 7.0 

14 26.933551 75.106868 7.0 

15 26.934037 75.106410 7.0 

16 26.934375 75.106021 5.9 

17 26.934762 75.105979 5.9 

18 26.935182 75.105217 5.3 

19 26.935581 75.105158 5.0 

20 26.93486 75.104786 5.5 

21 26.934297 75.104963 5.5 

22 26.933229 75.105206 6.2 

23 26.932258 75.105551 6.2 

24 26.931555 75.10587 6.3 

25 26.930927 75.10628 6.1 

26 26.930538 75.106672 6.9 

27 26.930025 75.106881 6.0 

28 26.929265 75.107191 6.0 

29 26.928688 75.107526 5.8 

30 26.927951 75.107989 5.5 

Bold represent the locations of maximum water depth have been found at the time of field visits
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Table 11.4 Morphometrical classification for aquatic systems based on the form factor (Vd) 
(Håkanson 2004) 

S. No. Form of lake Class name Vd 

1 Very convex VCx 0.05–0.33 

2 Convex Cx 0.33–0.67 

3 Slightly convex SCx 0.67–1.00 

4 Linear L 1.00–1.33 

5 Concave C >1.33 

11.4.6 Dynamic Ratio (DR), Erosion-Transportation (ET) 
Areas, and Accumulation Areas (Ao) 

In limnological contexts, knowledge about the condition of the bottom dynamics is 
one of the most valuable parameters, because it directly governs the resuspension 
activities and determines the wave base for lake mixing phenomena (Fig. 11.9). 

In sedimentological contexts, it is important to know about the ET-areas and (Ao) 
areas, because the potential results and ecological effects of the sediment loading or 
contaminants are directly related to these areas. 

DR is one of the valuable morphometrical parameters that represent the lakes’ 
bottom dynamic conditions very efficiently (Håkanson 1982; Lindström et al. 1999). 
DR plays an important role in processes associated with sediment–water interface 
and other several wetland processes, e.g., desiccation of the lakes. In limnological 
context, the maximum wave base is associated with effective fetch and water surface 
area (Håkanson and Jansson 1983; Rowan et al. 1992). As illustrated in Fig. 11.10, 
a high DR value indicates a lake, which has greater bottom areas exposed to wind

Fig. 11.9 Relationship between the lake bottom areas dominated by processes of transportation 
and erosion, expressed as the DR and the fraction of lake area (ET). Adapted from Håkanson (2004) 
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(above the wave base) than a lake with low DR. The high DR values are related 
to the higher degree of resuspended material (Lindström et al. 1999). In case of 
large and shallow lakes, the turbulence in surface water generally occurs greater 
(with high DR values) compared to deep and small lakes. In case of the SL, DR 
values (DR = 22.87 and 27.23) indicate that it has larger bottom areas exposed to 
wind processes or wave energy (Table 11.6). The resuspension processes related to 
wind/wave action generally dominate in lakes with higher dynamic ratios (DR > 
0.25). Turbidity currents influenced by the slope processes are significant in lakes 
with low DR values (Fig. 11.10). In this study, the computed DR values show that 
the SL is extremely shallow inland lake system (Table 11.5). 

There are two different boundary conditions for ET been given by Håkanson 
(2004): (1) If ET > 0.99, then ET = 0.99, and (2) if ET < 0.15, then ET = 0.15. The 
general illustration about ET-areas and other lake processes is shown in Fig. 11.11. 
In particular, the ET-areas are generally > 15% (ET = 0.15) of the total lake area, 
as there is always a shore zone controlled by wind/wave processes, at least for all 
lakes > 1 ha (Fig.  11.9) (Håkanson 2004). For functional and practical reasons, one 
also can generally find areas, which actually function as accumulated (A0) areas with 
more or less continuous sedimentation; i.e., thus the upper limit for ET is set at ET 
= 0.99 (Håkanson 2004).

In this study, for the SL, ET values have been found > 0.99 for both years; therefore 
according to the second boundary condition, they have been considered as 0.99 (Table

Fig. 11.10 Illustration of the DR; for two different lakes with the same area, a higher DR indicates 
a lake with larger areas above the wave base exposed to wind/wave energy. Adapted from Lindström 
et al. (1999) 

Table 11.5 Classes for the dynamic ratio (Lindgren and Håkanson 2007) 

S. No. Class DR Description 

1 Very deep <0.064 Areas dominated by slope processes and erosion and 
transport processes for fine particles 

2 Deep 0.064–0.25 Areas influenced by slope processes where erosion, 
transport, and accumulations for fine particles occur 

3 Intermediate 0.25–4.1 Areas more influenced by wind and wave processes where 
erosion, transport, and accumulations for fine particles occur 

4 Shallow >4.1 Area dominated by wind and wave processes and erosion 
and transport processes for fine particles 
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Fig. 11.11 Illustration of the lakes’ fundamental and general processes. Adapted from Håkanson 
(2003)

Table 11.6 Computation of morphometric parameters of the SL for the years 1975 and 2015 

Symbol Formulation/method Ref Unit Assessment years 

1975 2015 

(a) Water index generation Håkanson 
manual 

km2 188.351 2.6523 

(lo) or (P) ERDAS tools km 131.103 8.9299 

(Lmax) ERDAS tools km 22.499 1.6465 

(Bmax) ERDAS tools km 12.253 2.4016 

(B) B = a/Lmax km 8.3715 1.6108 

(Dmax) Literature and field survey m 3.0 0.070 

(D) Literature and field survey m 0.6 0.0598 

(V ) V = D × a km3 0.113 0.00016 

(Vd) Vd = 3 × D/Dmax Dimensionless 0.6 2.562 

(F) F = P 
2× 

√
πa 

2.695 1.547 

DR DR = 
√
a/D 22.87 27.23 

ET ET = 
0.25 × DR × 410.061/DR 

5.775 = 
0.99 

6.865 = 
0.99 

A0 A0 = 100 − ET or 99 1% 1% 

Note A0 can be considered as negligible 

11.6). ET-areas > 0.99 also show that the bottom areas or almost entire lakebed of 
the SL is exposed to the wind/wave activities, which satisfy its extreme shallowness. 

11.5 Conclusion 

This research work provides a partial view of the status of SL. Nonetheless, it 
evidently points out certain constructive inclinations showing that the work on
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morphometry and condition assessment has been prolific. In limnological research, 
the condition assessment affects the acquaintance of the dynamics and conse-
quences observed; limited observations may create incomplete setups about the 
lake investigated. Possibly, the assessment conducted about morphometric variables 
of the SL system might be similarly affected, demanding multifaceted ecosystem-
based research. The present work enables to assess the SL basin in terms of its 
morphometrical dimensions. 

In addition, the SL provides breeding ground for thousands of migratory water-
birds, i.e., flamingo, (Fig. 11.12). Prominently, it is possible to observe that LM 
does affect the number of migratory waterfowls and the abundance of other aquatic 
animals during winter seasons. Presently, the SL has been divided into two unequal 
parts, which severely affect the overall lake productivity (Fig. 11.8). Therefore, the 
drastic changes have been observed in its morphometrical dimensions. Based on 
this study, for the year 1975, this lake can be characterized as a shallow, convex, and 
intermediate type hypersaline-alkaline endorheic lake. In addition, for the year 2015, 
this lake behaves as an extremely shallow, concave, and small hypersaline-alkaline 
endorheic lake system. This research work is based on only two distinct years, i.e., 
1975 and 2015; if similar morphometrical analysis can be performed for a long time 
period, then characteristics of this lake can be defined in a more illustrative and 
descriptive way. 

Fig. 11.12 Importance of lake shoreline areas for flamingo foraging during prevalent wind effects 
(Field visit date—October 03, 2014)
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Chapter 12 
Remote Sensing and GIS in Spatial 
Monitoring of the Wetlands: A Case 
Study of Loktak Lake Catchment, India 

Anand Vicky and Oinam Bakimchandra 

Abstract Occurrence of the wetlands is characterized where the land is covered by 
water or the water table level is close to the land surface. Wetlands are the only ecosys-
tems for whose conservation an international convention called Ramsar Convention 
was set up in the year 1971. According to Ramsar Convention, a wetland is “areas 
of fen, marsh, swamp, peat either artificial or natural with water which is flowing 
or static including areas of marine water the depth of which should not exceed six 
meters.” As per Ramsar Convention in 2019, there are 2341 Ramsar sites listed 
across the world, among which Loktak Lake is one of the Ramsar sites nestled in 
the North-Eastern Himalayan ranges. Distinctive feature of this lake is the presence 
of herbaceous floating biomass (herbaceous wetlands) locally known as phumdis. In 
this case study land use land cover (LULC) of Loktak Lake catchment was mapped 
with special emphasis on wetlands and herbaceous wetlands. Based on the driving 
factors and past LULC for the year 2007, 2014 and 2017, the future LULC for the 
year 2030 was predicted by Land Change Modeller (LCM) in TerrSet using Landsat 5 
and Landsat 8 multispectral satellite imageries. Artificial neural network (ANN) and 
Markov chain algorithms embedded in the LCM were deployed to predict the future 
LULC condition. ANN was trained with driving factors, namely slope and elevation, 
distance from built-up area and distance from roads. Results indicate that there was 
decrease of 28.65% and 6.08% in herbaceous wetlands and wetlands, respectively, 
in the year 2017 as compared to the year 2007. Similar trends were observed in 
the future projected LULC map of 2030 with a decrement of 6.48% and 41.56% 
in wetlands and herbaceous wetlands as compare to the baseline scenario of 2007. 
Based on the result of projected scenario, it is evident that there is a need to devise 
proper environment conservation policies. 
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12.1 Introduction 

Wetlands play an important part for the survival of human. As per the ancient liter-
ature, many human civilizations have evolved near to the wetlands and riverine 
system. Wetlands have immense ecological, cultural, economic and social values 
(Ramachandra et al. 2002). They exhibit massive diversity as per their water regime, 
genesis, water quality, geographical location, sediment characteristics and dominant 
species (Space Applications Centre (SAC) 2011). With total area coverage of 12.1 
million km2 it accounts for 40.6% of the total global ecosystem services (ES) value 
(Ramsar Convention on Wetlands 2018). Wetlands are highly threatened by anthro-
pogenic activities (Best 2019; Tong et al. 2017; Sieben et al. 2018; Zhang et al. 2017), 
and they are also recognized as critical for ecosystem services (Sieben et al. 2018; 
Zhang et al. 2017). Since 1970 unsustainable use and over exploitation of wetlands 
across globe (Rebelo et al. 2017) have resulted in 35% loss in the overall global 
extent of the wetlands (Ramsar Convention on Wetlands 2018). Wetland degrada-
tion and losses continue even after Ramsar Convention is rectified by 169 countries 
across the globe (Ramsar Convention on Wetlands 2018). In past, literature reviews 
have focused on wetland ecosystem services from future directions and theories (Xu 
et al. 2018; Liu et al. 2010), mechanisms and driving factors behind change in the 
wetlands (Peralta-Maraver et al. 2018; Boulton et al. 2016; Wondie 2010), policies 
and management, quantitative approaches (Janse et al. 2019; Barbier 2016; Langan 
et al. 2018), regional scale to national scale (Bassi et al. 2014; Sterner et al. 2017; 
Steinman et al. 2017). The studies have also concentrated on riverine wetland ecosys-
tems (Yang et al. 2016; Dam et al. 2014), lake wetland ecosystems (Sterner et al. 
2017; Steinman et al. 2017), coastal and mangroves wetlands ecosystems (Yang et al. 
2016; Dam et al. 2014; Kelleway et al. 2017; Friess  2016; Zhao et al. 2016). The 
current study deals with spatial monitoring and projection of herbaceous wetlands 
using artificial intelligence (AI) analytics. 

In the year 1971 an international treaty called Ramsar Convention on Wetlands was 
signed for national action and international cooperation for wise use of wetlands and 
conservation of their resources (Bassi et al. 2014). According to Ramsar Convention 
on Wetlands “a wetland is a area of marsh, fen, peat land or water, whether natural or 
artificial, permanent or temporary, with water that is static or flowing, fresh, brackish 
or salt, including areas of marine water the depth of which at low tide does not exceed 
six metres” (Ramsar Convention on Wetlands 2018). Under Ramsar Convention a 
total of 211 sites in North America, 1052 sites in Europe, 175 sites in South America, 
289 sites in Asia, 79 sites in Oceania region and 175 sites in Africa has recognized 
as wetland of International Importance or the Ramsar sites (Ramsar Convention 
Secretariat 2013). As per the definition of Ramsar Convention most of the man-
made wetlands (reservoirs, irrigated fields, ponds, gravel pits, sacred groves, canals, 
etc.) and natural water bodies (mangroves, rivers, coral reefs, lakes) in India make 
up the wetland ecosystem. Out of 289 sites in Asia 37 sites are located in India 
(MoEFCC 2020). Among 37 Ramsar sites in India two are located in northeastern 
part of India; among them one is Loktak Lake, India (MoEFCC 2020). However there
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are many wetlands across India which perform potentially valuable functions that are 
continued to be ignored in the policy process. Due to this many wetland ecosystems 
are degraded and threatened due to increased economic activities, population growth, 
anthropogenic factors and urbanization (Central Pollution Control Board (CPCB) 
2008). 

Wetlands are the ecosystem that binds aquatic and terrestrial components together. 
The association of climate change with wetlands can be understood in two aspects: 
firstly, effects of change in climate on the wetlands and secondly, the capability of the 
wetlands to influence climate change (LDA and WISA 2010). The change in LULC 
has altered the hydrology, lateral and base flow, increase in landslides and floods, 
increase in surface runoff, decrease in groundwater recharge, increase in soil erosion, 
decrease in water quality, etc. in the Loktak Lake sub-catchment (Ramsar Bureau 
2016). The core reason behind the issues related to the degradation of Loktak Lake 
catchment is the loss of vegetation. The degradation of the sub-catchment area has led 
to flooding in the low lying areas, increase in the siltation issues, altered hydrological 
regime thereby affecting the hydrological processes, decrease in the thickness of 
phumdis (herbaceous wetlands) and loss in the biodiversity of the peripheral zones 
of Loktak Lake and the Keibul Lamjao National Park (KLNP) (LDA and WISA 
1999; Anand et al. 2020, 2021). 

In the past decades geographic information system and remote sensing have 
emerged as efficient and powerful tool which has been used mapping LULC and 
modeling LULC for the future (Bansod and Dandekar 2018; Pozzi and Small 2002; 
Herold et al. 2003; Milesi et al. 2003; Peng et al. 2012; Kumar et al. 2016; Ahmed 
et al. 2013; Chen et al. 2017; Tan et al. 2016; Ali et al. 2018; Ahmad et al. 2009; 
Roy et al. 2017; Li et al.  2011; Ayele et al. 2018; Cheema and Bastiaanssen 2010). 
For understanding and extracting the information related to the land development 
processes and LULC change patterns satellite remote sensing provides economical 
multispectral and multi-temporal data (Li et al. 2011; Ayele et al. 2018; Cheema 
and Bastiaanssen 2010). In the recent times modeling tools like cellular automata, 
regression tree, linear regression model, Markov chain and artificial neural network 
are being used for the future projection of LULC (Singh et al. 2015; Yirsaw et al. 
2017; Gashaw et al. 2017; Yagoub and Bizreh 2014; Liping et al. 2018; Etemadi 
et al. 2018; Karimi et al. 2018). Markov chain is a probabilistic approach to predict 
transition of one LULC class to other over a piece of land by calculating the proba-
bility of change. The change in LULC of past is applied to predict the future LULC 
of the region. The overriding objective of this study is to map and analyze the spatio-
temporal changes in LULC of the past and predict the LULC for 2030 using Markov 
model embedded in LCM.
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12.2 Wetlands Classifications and Distributions 

12.2.1 Ramsar Classification 

Wetlands can generally be classified into five basic systems, namely: Estuarine, 
Riverine, Marine, Palustrine and Lacustrine (Frazier 1996). These consist of deep-
water habitats and complex wetlands that carve up the influence of similar biological 
and chemical, geomorphologic, hydrological factors (Davis 1994). The Ramsar clas-
sification of wetland types currently in use was adopted by the Conference of the 
Parties in 1990 and was annexed to recommendation 4.7 (Davis 1994). As per the 
Ramsar Convention, the wetlands can be classified in three different categories, 
namely: inland wetlands, coastal and marine wetlands and man-made wetlands. 
Further the wetlands can be reclassified into 40 different types (Davis 1994). 

For the description of Ramsar sites, the Ramsar classification was developed as 
a simple tool. It serves as a baseline for the design of framework to provide units 
for comparability of terms and concept at local or national scale wetland inventory. 
Convention can recognize threatened wetlands across the globe and those which are 
under-represented in the List of Wetlands of International Importance using the broad 
classification system. 

12.2.2 Wetlands Classifications in India 

India being a vast country has diverse topographic and climatic conditions which 
is accountable for the high diversity of fauna and flora (Balasubramanian 2017). 
Wetlands are broadly distributed across India from the Himalayan ranges in the 
north to Deccan traps in the peninsular India. As per National Wetlands Atlas (2011) 
(MoEF 2011), the wetlands in India are classified in the three different levels from 
Level 1 to Level 3. Among the three basic levels of classification, Level 1 is further 
sub-divided into coastal and inland, Level 2 is sub-divided into man-made categories, 
and Level 3 is further sub-divided into 19 categories on the basis of topographic, 
vegetation and climatic conditions. 

12.2.3 Distributions of Wetlands in India 

In India there are 67,429 numbers of wetlands in total with area coverage of about 
4.1 million hectares (MoEF 1990). Among these 2175 are natural and 65,254 are 
man-made wetlands. As per survey conducted by the Ministry of Environment and 
Forest (MoEF) in 1990, out of 4.1 million hectares of area under wetland cover, 
0.45 million hectares of land is covered by mangroves, 2.6 million hectares are 
man-made, and 1.5 million hectares are natural wetlands. The Directory of Indian
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Fig. 12.1 Ramsar sites in India 

Wetlands published by Asian Wetland Bureau records 147 sites as important and 68 
as protected by the Wildlife Protection Act of 1972. There are altogether 41 Ramsar 
sites in India among which three of them are in NorthEastern India, i.e., Rudrasagar 
Lake in Tripura, Deepor Beel in Assam and Loktak Lake in Manipur (MoEFCC 
2020). Location of 36 Ramsar sites in India is shown in Fig. 12.1. 

12.3 Drivers for Change in Wetland Conditions 

Invariable increase in population and socio-economic development in the region 
creates numerous drivers which cause degradation of wetlands. The driving factors 
for the degradation of wetlands are divided broadly into two major categories, i.e., 
direct drivers and indirect drivers (Van Asselen et al. 2013). Direct drivers are those 
anthropogenic factors or natural factors that cause biophysical changes at regional 
scale. In case of indirect drivers they have diffuse or disperse effect mostly related to 
the indirect driving factors and often relate to the cultural and demographic, socio-
economic and institutional processes. Wetlands are influenced by some megatrends. 
Natural driving factors include volcanic eruptions, solar radiation, earthquakes, pests
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and diseases and ecosystem and succession processes, whereas the human induced 
or anthropogenic factors consist of water abstraction, climate change, LULC change, 
external inputs and resource consumption. Variation in climate is natural driver, but 
change in climate due to anthropogenic activities is associated to greenhouse gases 
in the atmosphere. Drivers can have both positive and negative influence. Majority 
of positive drivers are human responses for mitigating change. Our perspective is 
hindered by the complication of the pathways from indirect drivers to wetland degra-
dation. For example, climate change can be direct driver by affecting temperature, 
hydroperiods, fluctuations in the sea level, etc. (Renton et al. 2015); on the other 
hand it can be indirect driver, e.g., mitigation efforts can be hydropower generation. 
However as an element of management system of man-made wetlands many direct 
driving factors of natural wetlands play a significant role. 

12.4 Land Use Land Cover Change (LULCC) Modeling 
Techniques 

There are seven basic forms of modeling techniques like process-based models, 
data mining models, hybrid models, machine learning models and statistical models 
which are being used for LULC modeling. Among the several modeling techniques 
Cellular Automation is the most commonly used techniques. Cellular Automation is 
a dynamic model which was developed to simulate complex patterns (Neumann and 
Burks 1966). Cellular Automation can capture global patterns and local behaviors 
(Wolfram 1984). The basic components of Cellular Automation include: (1) grid gap 
which can be represented as irregular or regular cell, (2) each cell has the capability 
to change based on cells in its neighbors, (3) classification of data on transition rules, 
(4) extent of influence of neighbor cells from central cell and (5) time step. For the 
calibration of model to model the LULC the best set of transition rules is defined 
(Landis and Zhang 1998). Since the LULC patterns are complex and the numbers of 
variables are more, it becomes difficult to set the best combination of transition rules 
(Wu and Webster 1998). Generally there are two ways to model and calibrate Cellular 
Automation models both being dependent on time and space (Pontius et al. 2004) 
(Fig. 12.2). The first way is using machine learning algorithms, statistical methods 
(Wu 2002). The other method is by hit and try approach where the simulation result 
from various combinations of parameters is compared (Clarke et al. 1997). Structure 
of Cellular Automation (CA) model is shown in Fig. 12.3.

12.4.1 Vector-Based CA (VEC-GCA) 

Using diverse functions a new vector-based CA model permits changing the size 
and shape of objects across time (Moreno et al. 2008, 2009). This topology is open
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Fig. 12.2 Calibration and validation across space and time. Adopted: Amin (2013) 
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model 

Grid Space NeighborhoodStatus Transition RuleTime step 

Fig. 12.3 Structure of cellular automation (CA) model

to define influence zone surrounding each object. Using dynamic neighborhood it 
solves the dependency on cell size of a CA model using vector data. This model 
is independent of number of objects between two objects. As object changes shape 
this model involves variety of operations making vector-based Cellular Automation 
model intense in computation. But the major advantage with vector-based Cellular 
Automation model minimizes the extensive computation time required for sensi-
tivity analysis. The structure of vector-based Cellular Automation model is shown 
in Fig. 12.4.
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Fig. 12.4 Structure of vector-based cellular automation (CA) model. Adopted: Amin (2013) 

12.4.2 CA-Support Vector Machine (SVM) (CA-SVM) 

To distinguish LULC, Cellular Automation-support vector machine transition rules 
define linear boundaries. So it becomes important to use a model which can discover 
the nonlinear boundaries for the transition rules (Yang et al. 2008). Artificial neural 
network (ANN) can be used for the parameterization of CA; using ANN rather 
than global optimization it may result in local optimization. In nonlinear complexity 
scenario, SVM is used to define transition rules in CA to improve result (Yang et al. 
2008). In order to detect the transition rule other information is combined with SVM 
(Fig. 12.5). Land use land cover change probability map is the final outcome which 
is projected based on the decision function. 

SVM-CA 

Using driving forces 
to quantify LULC 

transitions 
SVM parameters Decision function 

Prior LUCC suitability 
estimation 

Posterior LUCC 
suitability estimation 

Neighborhood 

Constraint 

Random variable 

Fig. 12.5 Structure of CA-SVM model. Adopted: Yang et al. (2008)
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12.4.3 CA-MCE 

Based on Multiple Criteria Evaluation (MCE) CA transition rules have been set (Wu 
1998). CA has been integrated with ANN for the derivation of parameters (Li and 
Yeh 2002). Because of ANN having the black box nature it is difficult to interpret 
the parameters. However interpreting the meanings of MCE weights is easy. The 
contribution to the land use land cover change is indicated by the smaller or the 
larger values of the corresponding driver. 

12.5 Case Study of Herbaceous Wetlands (Phumdis) 
and Wetlands in Loktak Lake Catchment, Manipur, 
India 

This case study, mapping of LULC in past for the year 2007, 2014, 2017, was 
carried out, and based on it LULC for the year 2030 was projected in Loktak Lake 
catchment, a Ramsar site in Manipur, India (Fig. 12.6). LCM embedded in the TerrSet 
software was used to predict the LULC map for future based on LULC map of past. 
Artificial neural network (ANN) and Markov chain algorithms entrenched in LCM 
were deployed to predict the future LULC condition. Landsat 5 C1 level-1 and 
Landsat 8 OLI C1 level-1 satellite data obtained from USGS earth explorer was used 
in this study. ANN was trained with driving factors, namely slope and elevation, 
distance from built-up area and distance from roads. Using obtained LULC maps for 
2007 and 2014, LULC map of 2017 was predicted using LCM. Predicted LULC map 
of 2017 was then compared to actual LULC map of 2017 for the purpose of validation, 
and after obtaining good degree of agreement between observed and predicted LULC, 
then based on the LULC of 2007 and 2017 the LULC for the year 2030 predicted. 
The driving factor basic dataset, namely town plan map and road network map of 
Manipur, was obtained from Department of Town Planning, Govt. of Manipur and 
North Eastern Space Application Centre, respectively. Maximum likelihood classifier 
algorithm embedded in ERDAS-Imagine was used to carry out image classification. 
The accuracy of the classified image was assessed using historical satellite imagery 
obtained from Google Earth Pro and ground control point.

Markov in the LCM of TerrSet software mainly considers two techniques, first is 
to assess the predicted LULC based on past LULC that has provided us to develop 
transition probability matrix, i.e., the probability of conversion of one LULC class 
to other. CA-Markov was used to predict the future LULC map for 2030 based on 
the LULC map of 2007 and 2017 (Eastman 2015). To apply this model which is 
based on number of random process T (s), FT is the function of random process T, 
if Markov process for any time s1 < s2 < s3…… < sn < sn+1, then the random process 
will satisfy the Eq. (12.1) (Subedi et al. 2013)

FT (T (sn+1) ≤ xn+1|T (sn) = xn, T (sn−1) = xn−1, T (s1)



250 A. Vicky and O. Bakimchandra

Fig. 12.6 Loktak Lake catchment area

= FT (T (sn+1) ≤ xn+1)|T (sn) = xn) (12.1)

where sn represents present time, sn+1 represents any instant of time in the future, 
and s1, s2,…, sn−1 represents various instant of time in past. 

12.6 Results 

Land use land cover map produced using maximum likelihood classifier for the year 
2017, 2014 and 2007 is shown in Fig. 12.7. The produced LULC map for the year 
2017, 2014 and 2007 was found to be 93%, 92% and 88% accurate, respectively. The
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LULC was classified in six different classes with emphasis on herbaceous wetlands 
and wetlands. 

Fig. 12.7 LULC map of a 2007, b 2014 and c 2017, d projected future LULC map of 2030
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Table 12.1 LULC change assessment between the year 2007 to 2030 

LULC classes Area in 2007 
(km2) 

Area in 2030 
(km2) 

Change in area 
(km2) 

Change (%) 

Wetlands 158.01 148.39 −9.62 −6.48 

Herbaceous 
wetlands 

264.64 186.94 −77.7 −41.56 

LULC map for the year 2007 and 2014 was used to simulate the LULC map for the 
year 2017 using LCM embedded in the TerrSet. Later the simulated LULC map for the 
year 2017 was compared with the actual LULC map of 2017 to determine the model 
performance. The model performance was found to be good with a model accuracy 
of 86%, i.e., R2 = 0.86. Based on the LULC map of 2017 and 2007 the future LULC 
map for the year 2030 was projected using driving variables. From the mapping 
result it was observed that there is a decrease in herbaceous wetlands locally known 
as phumdis and wetlands by 22.54% and 5.99%, respectively, in the time period 
2007 to 2014. The similar trends were observed between the year 2014 to 2017 with 
a decrease in the area coverage by 4.98% and 0.09% under herbaceous wetlands 
and wetland category. Comparing it to the baseline scenario of 2007, decrement of 
6.08% and 28.65% in the area coverage under wetlands and herbaceous wetlands 
was observed for the year 2017. From the future LULC predicted by the model for 
the year 2030, further decrease in the area under wetlands and herbaceous wetlands 
by 6.48% and 41.56%, respectively, was observed (Table 12.1). 

12.7 Discussions 

The decrement in herbaceous wetlands and wetlands was mainly concentrated 
around the peripheral zone of Loktak Lake. The projected spatio-temporal change 
in wetlands around the peripheral zone of Loktak Lake for the year 2030 is shown 
in Fig. 12.8.

The decrease in the area under herbaceous wetlands was mainly because of 
removal of phumdis from the central core zone of Loktak Lake for the purpose of 
fishing (LDA and WISA 2006). The decrease in wetlands and herbaceous wetlands 
possesses serious threat to endangered aquatic and terrestrial species found in the 
Loktak Lake and peripheral zone of the Loktak Lake. The spatial change in phumdis 
is of serious concern to Keibul Lamjao National Park (KLNP) as the major portion of 
KLNP constitutes of herbaceous wetlands and possesses serious threat to the species 
at KLNP especially the Rucervus eldii eldii. For the restoration and sustainability of 
wetlands and herbaceous wetlands around Loktak Lake the change in LULC is of 
major concern. The fragile ecosystem is severely affected by the change in LULC 
condition surrounding the lake. Increase in population in the catchment has put 
immense pressure on natural resources of the lake for the livelihood of the people. 
Loktak Lake is currently in a deep ecological crisis, and the wetland is showing signs
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Fig. 12.8 Projected spatial change in wetlands near Loktak Lake

of near-total collapse. Loktak Lake faces a significant issue of unplanned land-use 
practices. Land use and land cover change is an environmental change that influences 
biodiversity and livelihoods and on a wide ranges of socio-economic and ecological 
processes. Changes in the landscape have brought considerable impacts on the envi-
ronment and livelihood of the local community. Unless remedial actions are taken 
immediately, the whole ecosystem is headed for a major devastation. 

12.8 Conclusion and Recommendation 

The environmental system is seriously threatened by encroachment of herbaceous 
wetlands and wetlands. There is a need of proper land use planning and policies 
for the preservation of environment. The LULC predictive modeling techniques like
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CA-Markov, ANN, SVM, vector-based CA, etc. can aid in predicting future LULC 
which will aid the decision- and policy-makers in building policies for environment 
protection and conservation. This study shows the potential remote sensing data 
obtained from the satellites which can aid in providing more spatial and temporal 
information which aid in sustainable development. There is a need to get clear under-
standing regarding the spatial changes in the herbaceous wetlands and wetlands in 
the future with high resolution datasets. To understand the phumdi dynamics, there 
is a need of separate study to be done on using second level of classification using 
high-resolution datasets. The models like LCM can aid in predicting and analyzing 
the future LULC for the sustainable use of resources. The modeling results show 
that proposed methods and remote sensing and GIS tools could be beneficial for the 
policy-makers to visualize, understand and future project the distribution wetlands 
for the sustainable use of resources. 
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Chapter 13 
Delineation of Groundwater Potential 
Zones in a Tropical River Basin Using 
Geospatial Techniques and Analytical 
Hierarchy Process 

A. L. Achu , N. Anjali, and Girish Gopinath 

Abstract The need for sustainable groundwater resource management increases 
with demand of clean water across the planet for industrial, agriculture, and domestic 
uses. In the present study, an attempt has been made to delineate the groundwater 
potential zones (GWPZ) in a tropical river basin, viz. Achankovil river basin (ARB), 
using GIS and analytical hierarchy process (AHP) techniques. For this, a total of eight 
geo-environmental variables such as lithology, geomorphic features, land use/land 
cover, soil texture, lineament density, drainage density, topographic wetness index, 
and mean annual rainfall were used to identify the GWPZ, and limited number dug 
well yield data published by the Central Ground Water Board (CGWB) is used to 
validate the model. The result indicates that nearly 50% of the basin is characterized 
by good to very good groundwater potential, whereas poor GWPZ accounts nearly 
25% of the basin. Among the different thematic factors’ geology, geomorphic features 
and slope angle have significant control over the occurrence of groundwater in the 
study area. The linear relation between well yield data and groundwater potential 
zones is assessed, and a R2 value of 0.790 indicates that the predicted model is 
trustworthy and can be used for groundwater resources management in the study 
area. The integrated approach used in the study is reliable and can be replicated 
anywhere in the tropical region. 
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13.1 Introduction 

Among the global freshwater resources, groundwater is the second-largest reservoir, 
which contributes approximately 30% of the global freshwater budget (https://water. 
usgs.gov/edu/watercyclegwstorage.html). Groundwater serves as a major source of 
water for domestic, industrial, and agricultural uses and other developmental initia-
tives (Achu et al. 2020a; Siebert et al. 2010). Global water deficit of 40% is expected 
by 2030 due to increasing demand of freshwater resources in various sectors (WWAP 
2012). 

Overall stage of groundwater development in India is considerably less compared 
to recharge, which is represented by the 1034 ‘over-exploited’ blocks (i.e., 15% of the 
total units), 253 ‘critical’ units (4%), 681 ‘semi-critical’ units (10%), and 96 ‘fully 
saline’ units (1.5%) of the country (CGWB 2017). India occupies more than 30% 
of the global irrigated lands as per country-wise groundwater utilization list (Margat 
and Van der Gun 2013). Adimalla and Venkatayogi (2018) stated that in several 
countries, overexploitation of groundwater has become a major issue including India 
which consumes the highest volume of global groundwater resource. In India, over 
90% of the rural population and roughly 30% of the urban population depend on 
groundwater to fulfill their basic needs (Reddy et al. 1996). Among the different 
states of India, Kerala State regularly experiences scarcity of surface water as well as 
groundwater resources (Achu et al. 2020a).The undulating nature of physiography 
often leads to increased surface runoff and low infiltration being the major reasons for 
water scarcity (Achu et al. 2020a; Jesiya and Gopinath 2018; Kamaraju et al. 1996). 
Groundwater development in Kerala has negative environmental consequences like 
overexploitation (Shaji et al. 2018) and decline of water levels (Hameed et al. 2015). 
Recent studies show that the groundwater resources of Kerala are unsafe, which are 
represented by 15% of the total blocks of Kerala State under over-exploited, critical, 
and semi-critical categories (CGWB 2017). 

The primary objective of a sustainable groundwater resource utilization strategy 
is to delineate groundwater potential zones of the region. The conventional methods 
used to locate, delineate, and model the groundwater potential zones are mainly 
ground-based surveys using geological, geophysical, and hydrogeological techniques 
(Israil et al. 2006; Singh and Prakash 2002). These methods have inherent limita-
tions such as labor intensive, extensive cost, and time consumption. However, with 
the introduction of geospatial technology, various authors used GIS coupled with 
remote sensing data for the delineation of groundwater potential zones (e.g., Achu 
et al. 2020a, b; Gopinath and Seralathan 2004; Kamaraju et al. 1996; Karanth and 
Seshubabu 1978; Krishnamurthy et al. 1996; Prasad et al. 2020; Sachdeva and Kumar 
2021; Sander et al. 1996; Saraf and Choudhury 1998; Saraf and Jain 1994; Swetha  
et al. 2017) which are rapid and cost effective, although many authors used different 
machine learning techniques such as random forest (Masroor et al. 2021; Sachdeva 
and Kumar 2021), support vector machines (Lee et al. 2018; Naghibi et al. 2017), 
boosted regression tree (Prasad et al. 2020), adaptive neuro-fuzzy inference system 
(Moghaddam et al. 2020), artificial neural networks (Tamiru and Wagari 2021),

https://water.usgs.gov/edu/watercyclegwstorage.html
https://water.usgs.gov/edu/watercyclegwstorage.html
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and statistical methods including bivariate frequency ratio (Boughariou et al. 2021), 
weight of evidence (Boughariou et al. 2021; Rane and Jayaraj 2021), index of entropy 
(Forootan and Seyedi 2021), and multi-criteria decision-making methods such as 
AHP (Achu et al. 2020a; Kaur et al. 2020; Masroor et al. 2021), fuzzy logic (Jesiya 
and Gopinath 2019; Singha et al. 2021), and multi-influencing factor (Mahala 2021; 
Rane and Jayaraj 2021). However, both machine learning and statistical models are 
well suited for the regions which have extensive data. MCDM methods such as AHP, 
fuzzy, and MIF are relying on expert opinion and are well suited for data scares 
regions (Achu et al. 2020a). The main aim of this study is to demarcate groundwater 
potential zones in Achankovil river basin of Southern Western Ghats (in Kerala) 
using AHP method for sustainable groundwater resources management. 

13.2 Study Area 

Achankovil is a major west flowing river of southern Kerala (Fig. 13.1). The 
Achankovil river basin (ARB) covers a total area of 1484 km2 and a total length 
of 128 km2 between Western Ghats in the east and Arabian Sea in the west, flowing 
parallel to the Kallada River basin in the south and Pamba river basin in the north 
(EMP 2012). Geographically, ARB lies between 8° 75'–9° 5' N latitudes and 76° 25'– 
76° 75' E longitudes and originates from Devermalai hill range of Western Ghats. 
Major tributaries of Achankovil river basin are Rishimala River, Ramakkalteri River, 
and Pasukidamettu River. After flowing through rouged valleys of Western Ghats, 
ARB enters into Kuttanad low-lying area and finally debouches into Arabian Sea 
through Vembanad Lake (Prasad et al. 2006). ARB exhibits rectangular, parallel, 
and trellis drainage patterns, and main river course is oriented in WNW-ESE direc-
tion, which follow the trend of the Achankovil shear zone. It is also noted that most 
of the lower-order streams of ARB are developed roughly at right angles to the 
main river course as structurally controlled (Manu and Anirudhan 2008) (Fig. 13.1). 
Geologically, ARB is located in the Southern Granulate Terrain (SGT), one of the 
largest granulite provinces in the world, and represents an ensemble of several crustal 
blocks, characterized by regionally metamorphosed rocks (Braun et al. 1998). The 
most dominant rock type in the study area is Precambrian crystalline rocks among 
which the prominent ones being charnockites and gneiss. Descending from western 
front of the Western Ghats, the Achankovil roughly follows the WNW-ESE trending 
Achankovil Shear Zone (ASZ) to the deltaic plains of the Pamba (Dhanya 2014). The 
10–20-km-wide and more than 100-km-long Achankovil shear belt in southern India 
is a prominent lineament that has been interpreted as a major shear zone in southern 
Western Ghats. The major aquifer systems of the area are characterized by weath-
ered, fissured, and fractured crystalline formations, the semi-consolidated tertiary 
formations, unconsolidated quaternary deposits laterite, and the alluvial formations. 
The potential phreatic shallow aquifer of the basin is the weathered mantle coupled 
with partially weathered and fractured zones in the crystalline rocks. The region 
experiences monsoon dominated tropical climate with two distinct rainfall seasons
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Fig. 13.1 Location map of the ARB, Kerala, India 

such as southwest monsoon (June to September) and northeast monsoon (October– 
November). ~80% of the rainfall receiving in the study area is a contribution of south-
west monsoon. ARB receives an average rainfall between 2299 and 2917 mm, having 
an influence of both southwest and northeast monsoon (Prasad and Ramanathan 
2005). 

13.3 Data and Methodology 

The geo-environmental variables used for the delineation of GWPZ were lithology, 
geomorphic features, land use/land cover, soil texture, lineament density, drainage 
density, topographic wetness index, and mean annual rainfall. The district geolog-
ical resources maps published by Geological Survey of India for Alappuzha and 
Pathanamthitta districts (the scale 1:250,000) are used to derive the lithological map 
of the study area. The geomorphic units of the ARB is obtained from Kerala State 
Remote Sensing and Environmental Centre (KSREC, scale 1:50,000). The soil series 
of the study area is gathered from the Soil Survey Organization, Government of 
Kerala. The LU/LC map of the ARB is collected from Kerala State Land Use Board 
(Scale 1:50,000). The photo-lineament of the ARB is extracted from Landsat 8 OLI
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images with SRTM dem (30 m) and drainage lines using visual image interpretation 
techniques. The lineament density (Ld) of ARB was estimated by calculating the 
total length of lineaments in unit area (Yeh et al. 2016), using the following formula 
(Eq. 13.1). 

Ld = 
Σi=n 

i=1 Li 

A 
(13.1) 

where 
Σi=n 

i=1 Li is the length of the lineaments [L] and A denotes the area. Drainage 
lines of the ARB are generated from SOI topographical sheets with 1:50,000 scale, 
and subsequently, drainage density per km2 area is computed using the following 
equation (Yeh et al. 2016) (13.2): 

Dd = 
Σi=n 

i=1 Si 

A 
(13.2) 

where 
Σi=n 

i=1 Si denotes the total length of drainage and A indicates unit area. The 
slope map of ARB is estimated from SRTM DEM (1 arc second) using ESRI’s spatial 
analysis tool. TWI is computed from SRTM DEM using SAGA GIS package. Mean 
monthly rainfall of the all-available stations for last 10 year is collected from Indian 
Meteorological Department (IMD), and a probabilistic interpolation method (IDW) 
is used to generate a continuous raster surface. 

The analytical hierarchy process (AHP) proposed by Saaty (1990) is the  most  
widely used multi-criteria decision analysis tool (MCDA) (Achu et al. 2020a; 
Kaur et al. 2020). AHP relays on pairwise comparisons without inconstancies, for 
solving complex decision problems (Saaty 1990). The MCDA using AHP involves 
three major steps starting from (1) framing expert’s knowledge about a particular 
phenomenon, ranking the parameters using Saaty’s scale of 1–9, (2) making pair-
wise comparisons, and (3) finally the consistency of the judgments is estimated 
by consistency ratio. The relative importance of the different variables influencing 
GWPZs was assessed by developing a diagonal matrix, which can be expressed as 
Eq. 13.3. 

A = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 a12 a13 · · ·  a1n 
a21 1 a23 · · ·  a2n 
a31 a32 · · ·  · · ·  · · ·  
... 

... 
... 

... 
... 

an1 an2 · · ·  · · ·  1 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(13.3) 

where ai j  = weight for attribute i weight for attribute j . 
The relative weightage of each variable was then computed by the estimation 

of the Eigen values and the corresponding normalized Eigen vectors (NEV). The 
consistency of the derived pairwise comparison matrix was calculated using the
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consistency ratio (CR) as Eq. 13.4 

CR = 
CI 

RI 
(13.4) 

in which the consistency index (CI) was calculated using Eq. 13.5, where RI is the 
consistency index of a random square matrix of the same order. 

CI = 
λmax − n 
n − 1 

(13.5) 

where λmax is the largest Eigen value of ‘A’ and n is the order of the square matrix. If 
A is perfectly consistent, then λmax will be equal to n giving a CI value of zero. As the 
inconsistency increases, λmax also increases (Saaty 1990). Commission and omission 
of a variable depend on the value of CR, where the factors with a consistency ratio 
value >0.1 were omitted from the analysis. In this study, the AHP technique was 
implemented using R® software, and geo-environmental variables were analyzed in 
ArcGIS to estimate the GWPZ using Eq. 13.6: 

LSI = 
nΣ 

i=1 

Wi × Fi (13.6) 

where W ji  is the ranking of various geo-environmental variables used for the 
computation of GWPZs and Fi is the corresponding relative weights. 

13.4 Results and Discussion 

The various geo-environmental factors used for modeling the GWPZs of the ARB, 
viz. lithology, geomorphic units, soil, lineament density, drainage density, slope, 
TWI and rainfall, are discussed below. 

13.4.1 Lithology 

Lithology is the most significant factor controlling the occurrence and movement of 
groundwater in a region (Dinesh Kumar et al. 2007; Kaur et al. 2020). ARB is a part 
of Achankovil Shear Zone (AKSZ), where ~71% of the basin are characterized by 
Precambrian crystalline. The dominant rock types are charnockites (area = 51%) 
followed by quaternary deposits of sand and silt (22%). Other significant rock types 
present in ARB area are acidic rocks, basic rocks, khondalite group of rocks, laterite, 
migmatite complex, and sandstone and clay with lignite intercalations (Fig. 13.2a).
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Generally, unconsolidated sediments, viz. sand and silt and sandstone and clay, with 
lignite intercalations are considered as high groundwater potential. 

Fig. 13.2 Spatially distributed geo-environmental variables of ARB, a lithology of ARB, b 
geomorphology, and c land use/land cover
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13.4.2 Geomorphological Features 

Geomorphological features are the manifestations of underlying parent materials 
(Achu et al. 2020a). The groundwater infiltration, movement, and contamination 
are heterogenous in different landforms, therefore identifying hydro-geomorphic 
features have significant role in analyzing regional groundwater potential (Achu et al. 
2020a; Aju et al. 2021; Krishnamurthy et al. 1996). The eastern portion of the ARB 
is characterized by Denudational Structural Hills (area = 520 km2) with NW–SE 
trending ridges, narrow valleys with steep slopes, whereas in the midstream portion, 
it is occupied by Lower Plateau (384 km2) and valley fills (Fig. 13.2b). Extreme 
downstream portion (western) area is characterized by unconsolidated sediments of 
alluvial plain, coastal plain, and channel bars which are generally considered as very 
high groundwater potentiality. 

13.4.3 Land Use/Land Cover (LU/LC) 

LU/LC is one of the most controlling factors of groundwater recharge process through 
changing the hydrologic response. The major LU/LC present in the ARB are forest 
plantations (area = 330.82 km2), rubber (304 km2), evergreen forest (169 km2), and 
mixed plantation (138 km2) (Fig. 13.2c). Other LU/LC present in the study area 
are rubber, coconut, double crop, deciduous forest, barren rock, mixed plantation, 
built up, evergreen forest, forest plantations, fallow land, land with scrub, grassland, 
wetlands, river, and water bodies. 

13.4.4 Soil Texture 

Soil permeability and porosity are the major factors controlling groundwater occur-
rence and movement of a region (Preeja et al. 2011). Infiltration of water is greatly 
dependent upon the physical characteristics of soil with the most prominent one 
being the grain size of soil (Preeja et al. 2011). Gravelly clay is the dominating soil 
texture (area = 39.26%) of ARB followed by clay, sandy, loam, and gravelly loam 
textures (Fig. 13.3a).

13.4.5 Lineament Density 

Lineaments are curvilinear/linear features associated with faults, fractures, and joints. 
Groundwater storage and movements are influenced by the presence of lineaments, 
hence the same is considered as reliable indicator of groundwater potential (Achu
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Fig. 13.3 Spatially distributed geo-environmental variables of ARB, a soil texture, b lineament 
density, and c slope angle
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et al. 2020a; Florinsky  2016). The presence of lineaments indicates a permeable zone, 
as a result of which the groundwater occurrence of an area is indirectly revealed by 
the lineament density of that area (Magesh et al. 2012). In the ARB, the lineament 
density ranges from 0 to 1.97 km2. It is noted that higher lineament density is observed 
in the eastern part of the basin (Fig. 13.3b). Generally higher the lineament density, 
higher the groundwater potentiality. 

13.4.6 Slope Angle 

Slope is major factor that controls the groundwater occurrence of a region by affecting 
infiltration rate and surface runoff (Dinesh Kumar et al. 2007; Sarkar et al. 2001). For 
instance, steep slopes are characterized by rapid surface runoff and low infiltration 
and vice versa. ARB is a highly undulating terrain, where slope angle ranges from 0 
to 67.7°. It is noted that slope is relatively higher in eastern portion of the study area 
and shows a gradual decrease toward western coastal plains (Fig. 13.3c). 

13.4.7 Drainage Density 

Drainage density can be defined as the total length of stream channels per unit area, 
and it shows the distribution and spacing of drainage lines on a watershed (Yeh et al. 
2016). In ARB, drainage density values range from 0 to 6.04 km/km2 (Fig. 13.4a) 
which is further classified into <1 km/km2 (poor), 1–2 km/km2 (moderate), 2– 
3 km/km2 (good), 3–4 km/km2 (very good), and >4 km/km2 (extreme) groundwater 
potentiality zones and assigned ranks, respectively (Table 13.1). It is noted that the 
eastern portion of the ARB shows higher drainage density and gradually decreases 
toward the eastern coastal pain region (Fig. 13.4a).

13.4.8 Topographic Wetness Index (TWI) 

TWI is a DEM derivative used to quantify the topographical control on hydrological 
process (Beven and Kirkby 1979). TWI is a function of upslope contributing area 
and local slope which is used to determine the surface runoff concentration and soil 
moisture at given point. In ARB, TWI values range from 3.62 to 24.289 (Fig. 13.4b), 
which is further classified into five categories such as <10, 10–12, 12–14, 14–20, 
and >20 and assigned respective ranks (Table 13.1).
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Fig. 13.4 Spatially distributed geo-environmental variables, a drainage density, b TWI, and c 
rainfall of ARB
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Table 13.1 AHP weights (NEV) and CR estimated for ARB 

S. No. Theme NEV CR 

1 Lithology 1.50E−09 

Acidic rocks 0.071 

Basic rocks 0.071 

Charnockite group of rocks 0.071 

Khondalite group of rocks 0.071 

Laterite 0.143 

Migmatite complex 0.071 

Sand and silt 0.286 

Sandstone and clay 0.214 

2 Geomorphic features 3.04E−11 

Residual hill 0.012 

Alluvial plain 0.111 

Channel bar (flood plain) 0.086 

Coastal plain 0.062 

Denudational Structural Hills 0.037 

Linear ridge (Lower Plateau) 0.025 

Lower Plateau (Lateritic)—dissected 0.074 

Mud flat (coastal plain) 0.099 

Piedmont zone 0.074 

Point bar (flood plain) 0.074 

Residual mount (Pediment) 0.012 

Residual mount 0.012 

Swale (coastal plain) 0.099 

Valley fill 0.111 

Waterbody 0.111 

3 LU/LC 3.27E−11 

Grass land 0.018 

Coconut 0.054 

Agriculture plantation 0.054 

Barren rock/stony waste/sheetrock 0.018 

Built up 0.036 

Double crop 0.125 

Fallow land 0.036 

Deciduous forest 0.071 

Evergreen forest 0.089 

Forest plantations 0.089

(continued)
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Table 13.1 (continued)

S. No. Theme NEV CR

Rubber 0.036 

Land with scrub 0.054 

River/waterbodies 0.161 

Wetlands (waterlogged) 0.161 

4 Soil texture 1.75E−09 

Clay 0.053 

Gravelly clay 0.105 

Gravelly loam 0.263 

Loam 0.211 

Sandy 0.368 

5 Rainfall (mm) 2.66E−11 

<2400 0.067 

2400–2500 0.133 

2500–2600 0.200 

2600–2700 0.267 

>2700 0.333 

6 TWI 1.48E−11 

<10 0.059 

10–12 0.118 

12–14 0.176 

14–20 0.294 

>20 0.353 

7 Slope angle 1.73E−11 

<5 0.449 

5–10 0.224 

10–20 0.112 

20–30 0.090 

30–40 0.075 

>40 0.050 

8 Lineament density (km/km2) 6.69E−11 

<0.5 0.063 

0.5–1 0.188 

1–1.5 0.313 

>1.5 0.438 

9 Drainage density (km/km2) 6.18E−11 

<1 0.048

(continued)
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Table 13.1 (continued)

S. No. Theme NEV CR

1–2 0.095 

2–3 0.190 

3–4 0.286 

>4 0.381 

10 Data layers 1.18E−11 

LU/LC 0.024 

Lithology 0.214 

Drainage density (km/km2) 0.119 

Soil texture 0.095 

Rainfall (mm) 0.143 

TWI 0.048 

Slope angle 0.190 

Lineament density (km/km2) 0.167 

Geomorphology 0.200

13.4.9 Rainfall 

Rainfall is another important factor which controlls the occurrence and movement 
of groundwater in a region. Intensity and duration are the two rainfall parameters 
which affect infiltration rate and thereby groundwater occurrence (Arulbalaji et al. 
2019). ARB receives average annual rainfall between 2299 and 2917 mm and ~ 
80% of the rainfall during Indian summer monsoon (Fig. 13.4c). The annual average 
rainfall of ARB is further classified into five categories such as <2400 mm zones, 
2400–2500 mm zones, 2550–2600 mm zones, 2600–2700 mm zones, and >2700 mm 
zones, and ranks are assigned, respectively (Table 13.1). 

13.4.10 Relative Importance of the Factors 

Though numerous geo-environmental factors influence groundwater recharge, the 
one factor that contributes highly toward the process can be determined using AHP. 
Among the factors considered, the prominent one contributing toward groundwater 
recharge is lithology having NEV value of 0.214 followed by slope angle (0.190), 
lineament density (0.167), rainfall (0.143), drainage density (0.119), soil texture 
(0.095), and TWI (0.048) (Table 13.1). The sand and silt have relatively higher rating 
(0.286) in lithology, while acidic rocks, basic rocks, charnockites rocks, and khon-
dalite rocks have the lowest weightage. The least contributing factor is land use/land 
cover (0.024), thereby having less influence on groundwater potential. Among the
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different geomorphic unit’s valley fill (NEV 0.111), Swale (coastal plain) (0.099) 
and channel bar (flood plain) (0.086) show higher ratings. Generally, these geomor-
phic units are filled with unconsolidated sediments which have good groundwater 
potentiality. In the case of land use/land cover, wetlands (0.161), ever green forest 
(0.089), and forest plantation (0.089) are considered as good groundwater poten-
tiality, whereas grasslands are considered as poor groundwater potentiality. Among 
the different soil types, sandy soil shows the highest weightage (0.368) followed by 
gravelly loam (0.263). Clayey soil is generally considered as poor for groundwater 
potential (0.053), mainly due to its aquiclude nature and restricts water infiltration. In 
this study, the highest weightage is assigned for those areas which receive maximum 
rainfall >2700 mm and subsequently considered as good for groundwater potential. 
TWI is a function of upslope contributing area, where flow accumulation causes 
higher soil moisture and subsequently higher groundwater occurrence. Therefore, 
maximum weightage (0.353) is given in TWI category >20. Slope angle controls 
surface runoff and concentration and thereby a significant factor controls the occur-
rence of groundwater in a region. In ARB, the highest weightage is given with 
slope angle less than 5° and vice versa. In the case of lineament density, maximum 
weightage is assigned in lineament density >1.5 km/km2 (0.438), and subsequently, 
minimum values are assigned in least lineament dense areas. In the case of drainage 
density, maximum NEV is obtained by >4 km/km2 density class (0.381) and vice 
versa. 

13.4.11 Groundwater Potential Zones (GWPZs) 

The GWPZs of the ARB were determined based on various geo-environmental vari-
ables, viz. lithology, geomorphic features, land use/land cover, lineament density, 
drainage density, soil texture, slope angle, TWI, and rainfall using GIS technique and 
remote sensing. The GWPZ of ARB is derived from the weightages estimated using 
AHP techniques (Table 13.1) and reclassified into four major categories of ground-
water potential, viz. poor groundwater potential zones, moderate groundwater poten-
tial zones, good groundwater potential zones, and very good groundwater potential 
zones (Fig. 13.5). Nearly, 25.03% of ARB belongs to poor groundwater potential 
zones followed by 25.22% in moderate groundwater potential zones, 25.14% in good 
groundwater potential zones, and 24.61% as very good groundwater potential zones. 
Very good groundwater potential zones are concentrated in the western part of the 
study area as the region has a relatively flat terrain with a greater concentration of 
sand and silt having low lineament density as well as drainage density, while the 
eastern part of the study area represents low groundwater potential zones as a result 
of higher slope and due to the presence of denudational structural zones.
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Fig. 13.5 Predicted GWPZs of ARB 

The accuracy of the predicted GWPZ map of ARB is estimated by analyzing 
bivariate relationship between GWPZ and well yield data published by the Central 
Ground Water Board (CGWB) (Fig. 13.6), which shows a good fit with a R2 value 
of 0.790. Therefore, the predicted model is trustworthy for future groundwater 
management in ARB.

13.4.12 Discussions 

The result of the present study is compared with other studies carried out across the 
globe as well as the regional perspective. Comparison of different variables used for 
GWPZ in ARB with previous studies with different environmental variables shows 
that lithology is the major factor which controls the occurrence of groundwater 
(e.g., Abuzied and Alrefaee 2017; Aykut 2021; Jasrotia et al. 2016). However, Kaur 
et al. (2020) noticed that soil, rainfall, elevation, and slope were also significant in 
demarcating GWPZs. The previous studies conducted in Kerala (e.g., Achu et al. 
2020a; Arulbalaji et al. 2019; Dinesh Kumar et al. 2007, Preeja et al. 2011) also  
reported that lithology, geomorphology, slope, and lineament density are the major 
factors which control the occurrence of groundwater in the region. 

The delineation of GWPZS in ARB is highly useful for the implementation of a 
comprehensive regional sustainable groundwater resource management. Moreover, 
the classification scheme used in this study enables the authorities to implement 
site suitable management strategies in each GWPZs for groundwater development 
of ARB. However, the GWPZ mapping using geo-environmental variables at finer 
spatial resolution may provide better results.
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Fig. 13.6 Relationship between well yield and GWPZs

13.5 Summary and Conclusions 

GIS and remote sensing are very efficent tools for determining groundwater poten-
tial zones of a river basin. The study has focused on the delineation of GWPZs 
in Achankovil river basin, Kerala, India, by using geospatial technique and analyt-
ical hierarchy process (AHP). Various geo-environmental factors like lithology, land 
use/land cover, lineament density, drainage density, soil texture, slope angle, TWI, 
and rainfall were used for delineation process. Lithology, geomorphic features, slope 
angle, lineament density, and rainfall play a critical role in the occurrence of ground-
water in the study area. GWPZs of ARB are further classified into poor groundwater 
potential (area = 25.03%), moderate groundwater potential zones (25.22%), good 
groundwater potential zones (25.14%), and very good groundwater potential zones 
(24.61%). The predicted model is validated using the well yield data published by 
Central Ground Water Board. The model shows a good agreement with field (R2 = 
0.790). The study exemplifies that the knowledge about these groundwater potential 
zones can be useful for sustainable groundwater management as well as for proper 
planning for obtaining groundwater.
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Chapter 14 
Management of Environmentally 
Stressed Areas in Watershed Using 
Multi-criteria Decision Tool in GIS: 
A Noble Technique to Conserve Soil 
for Agriculture 

Rahul Kumar Jaiswal, Shalini Yadav, and Ram Narayan Yadava 

Abstract Soil erosion is a natural process that affects land productivity and is consid-
ered one of the most significant environmental hazards. The climate, landscape and 
land cover, and conservation practices are the factors that are accountable for the rate 
and quantum of erosion which varies spatially and temporally. The geographic infor-
mation system (GIS) can analyze the spatial variability of different forces responsible 
for soil erosion and is widely used for the demarcation of hazardous areas and suitable 
conservation measures. Here, we have discussed the impacts of water erosion and 
suggested a framework to identify stressed areas using AHP and GIS-based tech-
niques to suggest conservation measures. The scientifically developed catchment 
area treatment plan using multilayer information in GIS can control soil erosion up 
to the maximum possible extent and provide sustainable development of the area. A 
case study has been presented in the chapter to demonstrate the application of the 
suggested framework in a catchment of water resource projects. 

Keyword Soil erosion · Erosion hazard parameters · Analytical hieratical process 
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14.1 Introduction 

Soil erosion is a momentous hazard of modern times which has several harmful 
effects on the environment and agriculture production and is one of the principal 
drivers of land degradation (Perry et al. 2021; Gessesse et al. 2014; Houyou et al. 
2016). The soil erosion loses top productive soil which contains important nutrients 
for the production of crops. Soil erosion is widely acknowledged as major problem 
well-being of society due to expanding population, urbanization, climate change, etc. 
(Issaka and Ashraf 2017). Moriasi et al. (2018) emphasized that erosion may cause 
disasters such as loss of capacities of reservoirs and floods during rainfall events and 
shifts in initial land suitability and capabilities. According to an estimate, 17% of 
the soils in different continents are affected by water erosion, which has emerged as 
an issue for conservation efforts in the twenty-first century (Suriaprasit and Shrestha 
2008; Walling and Fung 2003). A broad estimate of soil erosion in India showed 
that the soil in the range of about 5334 × 106 tonnes is being lost with a rate of 
16.35 tonnes/hectare/year (Saroba 2017), which is more than the permissible loss of 
4.5–11.2 tonnes/hectare/year (Narayana and Babu 1983). 

Gomiero (2016) (Singh et al. 1981) mentioned the declaration of the United Nation 
in its Sixty Eighth Assembly that the soil is key to the sustenance of life on earth which 
are essential for agriculture, ecology, and food production. The United National in 
its report pointed out that the increasing population exerts more pressure, and the 
sustenance of soils is the key to increasing the yield. Healthy soils can be ensured 
through sustainable management which leads to the stability and sustainability of 
the ecosystem and ultimately the food security of the world. Economic and social 
development which is possible soil management may be the key to success for poverty 
eradication and women’s empowerment. The UN expressed an urgent need to address 
climate change, land degradation, water availability, climate change, and drought due 
to the threat on the globe. 

Soil erosion has several negative consequences, and the most serious of which 
is nutrient loss from agricultural fields, which has a significant influence on crop 
productivity in poor nations (Gomiero 2016). Soil erosion has detrimental effects on 
the capacity of reservoirs due to sedimentation. The study of erosion from catchments 
is critical because sediment deposition in reservoirs diminishes reservoir capacity, 
limits water availability for approved uses, and may cause breaching of the river 
reach. Land degradation due to soil erosion affects agriculture productivity, water 
quality, and quantity, hydrological and environmental systems as various causing 
ecological imbalance and subsequent siltation and flood problems. According to an 
investigation by the Indian Council of Agriculture Research (ICAR), nearly 174 
million ha of land in India is affected by deprivation. The fertility and productivity 
are mostly determined by the topsoil, which, in addition to producing biomass, serves 
a variety of other well-known roles. 

The soil can be eroded by different agents including wind, water, and gravitation 
forces. The wind is the primary force of erosion of soil in arid, water in semi-arid and 
humid, while water and gravitational force in the mountainous region. Land uses,
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land cover, and topography are the most significant aspects affecting the intensity 
of erosion (Belay and Mengistu 2021). The soil erosion from water starts in the 
progressive form from rain splash to sheet to rill to gully and lastly the bank erosion. 
The different forms of erosion are described below. 

14.1.1 Rain Splash Erosion 

Rain splash erosion is the first stage of soil erosion when raindrop strikes ware soil and 
disintegrates the soil aggregate due to non-cohesiveness and absence of appropriate 
cover. The rainfall intensity, land cover, topography and soil type, etc., are some of 
the primary factors that affect the disintegration due to splash erosion. Some of the 
studies in America have indicated that detached soil particles can move up to 0.6 m 
vertically and 1.5 m longitudinally due to rain splash. 

14.1.2 Sheet Erosion 

It is the uniform removal of soil in a tiny coat from topsoil due to the forces of 
raindrops and overland flow. In this erosion, the topsoil in the form of a sheet is 
removed and generally occurred on sloppy land causing the loss of useful nutrients 
for crop growth. The sheet erosion generally occurs in ploughed land where soil 
particles are not bonded and covered. It can spread in very large areas if left unnoticed 
and no conservation measures are adopted. 

14.1.3 Rill Erosion 

The rill erosion is an extension of sheet erosion where water concentrates and forms 
small channels like structures for flowing soil and water. The depth of rills may be 
up to 0.3 m and can be removed by normal agronomic operation. 

14.1.4 Gully Erosion 

When more concentrated water passes with higher velocity, the depth of the channel 
generally along the draining can increase by more than 0.3 m depth that moves by 
headward erosion. The gully erosion affects the normal agronomic operation and 
cannot be removed using simple agriculture equipment. It is an unembellished form 
of loss because it converts the land into unfertile and not suitable for agriculture.
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14.1.5 Bank Erosion 

It is the last form of erosion due to the water was due to flow of sediment-laden water, 
the banks of rivers are eroded and submerged in the river. The bank erosion causes 
permanent loss of land due to excessive soil erosion from upstream areas. 

14.2 Soil Erosion in India 

The systematic research on soil erosion in India was started in the nineties when 
Narayana and Rambabu (1983) (Saroba 2017) concluded that 16,400 kg of soil is 
being lost every year from one hectare of land amounts to 5.3 × 1012 kg. Singh et al. 
(1992) gave another estimate of 15,200 kg per year from one-hectare land with a 
total loss of 4.98 × 1012 kg each year. It was estimated about 150million ha of land 
was affected by soil erosion (National Commission on Agriculture 1976). The recent 
estimate of the National Bureau of Soil Survey and Land Use Planning indicated that 
119.19 million ha of land suffered from land erosion due to water. The absence of 
cropping management practices, intense cultivation, tillage before the rainy season, 
ploughing of marginal land, and extreme climate condition is important factors for 
soil erosion (Lindstorm et al. 1992; Biswas et al. 2015; Colazo and Buschiazzo 2015; 
Ligonja and Shrestha 2015). The well-being of small and marginal farmers is affected 
greatly by soil erosion (Dai et al. 2015; Erkossa et al. 2015; Ochoa-Cueva et al. 2015; 
Taguas et al. 2015; Prosdocimi et al. 2016). Joglekar (1965) and Varsheney (1975) 
have suggested several enveloping curves for the prediction of sediment yield for 
different catchment areas in India. Correlation studies revealed that area alone does 
not have any significant association with sediment production rate, and hence, it calls 
for multivariate analysis involving several climatic and physiographic parameters 
(Jose et al. 1994). Misra et al. (1984) and Bundela et al. (1995) have developed 
statistical models on a spatial basis for small watersheds in the river Damodar. The 
runoff plot studies at Vasad were carried out to estimate the ‘K’ factor and ‘R’ 
factor for soil and climatic conditions and the ‘C’ factor for Mung, Groundnut, and 
Cowpea (Nema et al. 1978). Prasad and Singh (1994) have reported soil conservation 
procedures in a part of Rajasthan. 

Ram Babu et al. (1978) computed and presented zone-wise erosion index values 
based on erosion estimated from 44 stations. Singh et al. (1992) collected soil loss 
from 21 different places and estimated loss estimated from the universal soil loss 
equation from 64 places for the preparation of an iso-erosion map of India. The 
analysis of results suggested that mean annual soil loss due to water is lower than 
2200 kg/acre for forests with a cover of more than 40%. Narain et al. (1993) have  
mapped erosion quantitatively in East Bengal and estimated the rate of erosion 
between 0.0 and 5.0 t/ha/year. A statistically significant spatial model was estab-
lished by Rao et al. (1996) to estimate sediment yield in the Chenab basin using
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geomorphologic, climatic, and cover parameters and revealed the high rates of sedi-
mentation in the Chenab basin and its effect on the existing Salal dam near Jammu. 
Tiwari (2017) combined USLE with ILWS GIS to foresee soil loss in a part of the 
Narmada basin. 

14.3 Assessment of Soil Erosion 

The process-based WEPP was established in the nineties to examine soil erosion. In 
1991, the WEPP program allowed for the simulation of soil loss from minor catch-
ments. Many of the CREAMS model’s channel routing algorithms (Knisel 1980) 
were implemented in WEPP and modified as needed (Ascough et al. 1995, 1997; 
Baffaut et al. 1997). WEAP (Lindley et al. 1995) also created a novel component to 
estimate sediment deposition in impoundments. WEPP is a continuous simulation 
tool that may drive outflow and erosion dynamics using either observed or generated 
climate inputs. Based on long-term weather station records and weather inputs from 
the CLIGEN. 

The USLE model assesses the spatial distribution of loss using climatic, topo-
graphic, and management factors. The USLE model is the result of several field 
plot studies carried out in the USA to develop empirical equations in the multiplica-
tion of six different factors. After the invention of the USLE model, several scientists 
used USLE and developed many other models for the estimation of soil loss (Nearing 
et al. 1989; Alewell et al. 2019; Borrelli et al. 2018; D’Ambrosio et al. 2001; Diodato 
et al. 2017; Veihe et al. 2001).These models are mostly empirical soil erosion equa-
tions that use remote sensing to integrate soil, climate, vegetation, and topography 
information (Shen et al. 2003; Devatha et al. 2015).The remote sensing data can be 
manipulated in a GIS environment for the development of the USLE/RUSLE model 
to serve as an effective approach for computing soil loss from vulnerable areas in 
the watershed (Kayet et al. 2018; Fu et al.  2005). The GIS tool for the determination 
of land use from Landsat data applied to foresee the ‘C factor’ of USLE is in the 
research done by El Jazouli et al. (2017) and Lim et al. (2005). The NDVI was found 
suitable for the design of the C factor (Fu et al. 2006; Zhang et al. 2009). 

14.4 Watershed Prioritization and Design of SWC 
Measures 

The identification of hot spots and the development of catchment area treatment 
plans pave the sustainable development of watersheds in the long run. In developing 
countries like India, it is not feasible to apply simultaneously at all places, and it is 
prudent to identify susceptible areas where more intensive soil conservation can be 
applied. Soil erosion is affected by several factors including topography, land cover,
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meteorological factors, geology and geomorphology, and management practices. 
Regionally distributed characteristics or constraints with appropriate weights are 
used for the identification of degraded areas, and MCDM models are commonly 
regarded as quite beneficial in resolving decision-making conflicts (Ayalew et al. 
2020). For the first time, Jaiswal et al. (2013) (Fathizad et al. 2014) introduced 
the application of Saaty’s analytical hierarchical process (Khemiri et al. 2017) for  
the prioritization of watersheds. SAHP is the most widely applied MCDM, which 
uses hierarchical assemblies to portray an issue and then produces primacies for the 
possibilities based on the user’s judgment. 

An effective catchment area treatment (CAT) plan is a key factor to make water 
resource (WR) projects eco-friendly and sustainable. The RSdata due to their synoptic 
viewing, huge extent coverage, and manipulation capability in the GIS environment 
have immense potential in the field of prioritization, conservation, and land resource 
planning (Jaiswal et al. 2013; Saaty 1980; Ahmad and Pandey 2019; Kockel et al. 
2020; Kushwaha et al. 2010; Pandey et al. 2007). Jaiswal et al. (2014) (Yoshino and 
Ishioka 2005) used a weighted overlay technique of spatially distributed thematic 
maps in GIS for the selection of SWC measures. Here, a case study is being presented 
where a decision support system has been developed for the identification of priority 
sub-watersheds and scientifically designed SWC measures have been suggested in a 
management plan for implementation under govt. funded rural employment schemes. 

14.5 Application of GIS 

The parameters used for the identification of environmentally stressed areas vary 
spatially and GIS plays the central role to depict variation in the watershed/catchment. 
The GIS can handle raster and vector data with their location on earth and can be 
manipulated to obtain desired results. The significant advantage of the GIS applica-
tion is to handle remote sensing data which is helpful to give important information 
like land use, drainage, vegetation, etc. The DEM can be analyzed to excerpt the 
slope and parameters of soil loss. The geomorphological parameters can also be 
computed in GIS. The identification of appropriate locations and areas for different 
conservation measures can be made easy in GIS by the weighted overlay method. 
The GIS has added benefits of the availability of data readily to different users, low 
cost, and fewer measurement errors. Here, we are going to introduce a framework 
consisting of two interrelated modules that have been proposed that can be used for 
the scientific identification of environmentally degraded areas and suggestions for 
SWC measures for the catchment of the Kodar reservoir.
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14.6 Case Study 

14.6.1 Module-I: Prioritization 

In the Kodar catchment, SAHP was utilized to select stressed sub-watersheds. In AHP, 
the factors that influence the choice are identified with expert consultation and field 
knowledge, and here we have chosen nine criteria that influence soil erodibility and 
dubbed them erosion hazard parameters (EHPs).The prioritization of the watershed 
was carried out using two steps. The first step consists of the estimation of EHPs and 
then applying decision support to determine the weights of these EHPs and priority 
sub-watersheds. The workflow of module-I has been presented in Fig. 14.1. 

The erosional process depends primarily on agents of erosion and then on soil 
properties which are responsible for the detachment and movement of soils from their 
original location. The soil parameters are basic inputs in erosion models; therefore, 
infiltration, saturated hydraulic conductivity, texture, sp. gravity, and dry density 
were computed on 11 sites.

USLE 
model 

Jose & Das 
model 

GIS manipulation 
Rao &Mahabaleswara 

model 

Saaty’s AHP based decision 
support 

If CR < 10%CR 

No 

Change 
matrix 

Yes 

Priority sub-watersheds from 
weights of AHP and EHPs 

Sediment 
Production 

rate 

STI 
Geomorphological 

parametersSoil loss Sediment 
yield 

Slope 

TopographySoilClimate Land use Drainage, sub-watershed 

Fig. 14.1 Workflow for module-1 
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14.6.1.1 Erosion Hazard Parameters (EHP) 

In the study, nine erosion hazard parameters have been identified and computed for 
Kodar catchment as per the details given below. 

14.6.1.2 Soil Loss 

The RUSLE model is a widely used method (Xie et al. 2022; Jaiswal et al. 2014; 
Renard and Freimund 1994; Malczewscki 1999; Baskan et al. 2010; Tang et al. 
2014; Pan and Wen 2014; Bhandari et al. 2015) that groups landscape, rainfall, and 
management possible alternatives into six parameters for computation of soil loss 
(A in t ha−1 yr−1). 

A = Erosivity Factor(R) ∗ Erodibility Factor(K ) ∗ Slope Length Factor(L) 
∗ Slope Steepness Factor(S) ∗ Crop Manag. Factor(C) 

∗ Cons. Practice Factor(P) (14.1) 

14.6.1.3 Sediment Production Rate (SPR) 

A sediment prediction rate (ha-m/100 km2/year) model given by Jose and Das (1982) 
(Gaubi et al. 2017) was applied and represented by the following equation. 

Log(SPR) = 4919.80 + 48.64 log(100 + Form Factor) 

− 1337.77 log(100 + Circulatory Ratio) 
− 1165.65 log(100 + Compactness Coefficient) (14.2) 

14.6.1.4 Sediment Yield (SY) 

The simple empirical model that uses rain (cm), grade, LU factor (F), and drainage 
density (km/km2) to determine sediment yield (V s in Mm3/yr) is used for analysis 
and presented below (Mishra and Nagarajan 2010). 

Vs = 1.067 × 10−3 ∗ Rain1.384 ∗ Area1.292 ∗ Drainage Density0.392 

∗ Slope0.129 ∗ F2.51 (14.3) 

The LU factor (F) can be computed using Eq. (14.4) knowing DF: dense or 
reserved forest, DGF: degraded forest, AG: agriculture area, PS: pasture, WL: 
wasteland
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F = 
0.21 ∗ DF + 0.2D ∗ GF + 0.6 ∗ AG + 0.8 ∗ PS + WL 

Total Area 
(14.4) 

14.6.1.5 Sediment Transport Index (STI) 

The STI uses the two-dimensional catchment area (A) along with slope (S) to  
represent overland flow and can be expressed as: 

STI = 
⎡

A 

22.13 

⎤⎡ 
sin(S) 

0.0896 

⎤1.3 

(14.5) 

14.6.1.6 Slope (SLP) 

It is one of the most critical characteristics that has bearing on the conveyance of 
disconnected material. Soil erosion is more common in places with a steep slope, 
which can result in gullies and a loss of fertility. 

14.6.1.7 Geomorphological Parameters 

Geomorphology, which is commonly employed in prioritization (Jose and Das 1982; 
Rao and Mahabaleswara 1990; Yadav et al.  2020), is crucial to the formation of 
landforms and the erosion mechanism. For the selection of priority sub-watersheds, 
geomorphological EHPs such as drainage density (Dd: km/km2), channel frequency 
(Cf: no/km2), form factor (Rf: km−1), and circulatory ratio (Rc) (Chopra et al. 2005) 
were utilized. Knowing the length of the ith segment (Li in m) with total n segments, 
area (A in km2), basin length (L in km), and Ap is the area of a sphere has the perimeter 
same as the periphery of the basin. 

Dd = 
Σn 

i=1 Li 

A 
(14.6) 

Cf = 
Σ 

n 

A 
(14.7) 

Rf = 
A 

L2 
(14.8) 

Rc = 
A 

Ap 
(14.9)
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14.6.1.8 Decision Support of the Identification of Stressed 
Areas/Sub-watersheds 

In AHP, the comparison matrix is constructed by comparing each element with the 
remaining on a scale of 0 to 9 and can be seen in literature (Fathizad et al. 2014). 
The weight of each factor can be calculated using the eigenvector of the normalized 
pair-wise matrix. The consistency ratio is calculated using the following equation to 
determine the consistency of judgment: 

Consistancy Ratio = Consistancy Index 

Random Consistancy Index 
∗ 100 (14.10) 

Here, the consistency index (CI) was computed by Eq. (14.11). 

Random Consistancy Index = 
Primary Eigen Value 

Number − 1 
(14.11) 

The primary eigenvalue (Barman et al. 2021) can be computed approximately 
by calculating the product of the pair-wise comparison matrix. The unitless random 
consistency for different numbers of members can be taken from below given Table 
14.1 (Fathizad et al. 2014). 

14.6.2 Module-II: Development of CAT Plan for SWC 
Measures 

For the CAT plan, the land use and other thematic maps (Fig. 14.2) were overlaid, 
and appropriate conservation strategies were identified using the criteria adopted 
from the literature review (Yoshino and Ishioka 2005).After crossing the slope, land 
use, and soil maps, an attribute table may be generated to specify various agronomic 
parameters for agricultural land and biological measures for the barren and open 
forest.

Table 14.1 Random consistency index for different numbers of members in the decision 

Number 1 2 3 4 5 6 7 8 9 10 

Ran. Con. index 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

N is  the sample size and  RI is the random consistency index 
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Fig. 14.2 Workflow for module-II 

14.7 Study Area and Data Used 

The Kodar reservoir (catchment area: 317.17 km2), which was built over the Kodar 
River in Chhattisgarh has been chosen to apply the proposed framework for devel-
oping a scientific management plan including an effect assessment study. The location 
map of Kodar reservoir in India is presented in Fig. 14.3.

The meteorological data of Raipur from 1981 to 2008 was used in the analysis. A 
gauge site at Koma village was established to collect runoff and sediment data from 
2010 to 2012. Various in-situ (infiltration and permeability) and laboratory (texture 
and densities) soil analyses were conducted in the catchment and LISS IV data were 
used for the detection of land use. 

14.8 Results and Discussion 

14.8.1 Module-I: Prioritization of Sub-watersheds 

Module-1 was designed to identify priority sub-watersheds for this detailed soil 
investigation on eleven sites that were carried out in the basin. 

14.8.1.1 Soil Investigation 

On eleven sites, a detailed soil investigation was carried out for infiltration, saturated 
hydraulic conductivity, and texture (Fig. 14.4). The results of the analysis have been 
used in prioritization and input layer for the preparation of a treatment plan. The soil 
properties responsible for erosion at different sites in the basin are presented in Table 
14.2. The soils in the catchment of Kodar reservoir are silty loam and sandy loam.
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Fig. 14.3 Location map of Kodar reservoir and its catchment

14.8.1.2 Watershed Prioritization 

The watershed was partitioned into 67 sub-watersheds using drainage and DEM 
(0.05–13.05 km2). For all 67 sub-watersheds, the geographic distribution of all 
selected EHPs was computed and normalized in the range of 0 to 1.Saaty’s AHP 
was applied to get the weights of each EHP in the decision-making. The weights of 
different factors are presented in Fig. 14.5. Different factors of the RUSLE model 
and soil loss are given in Table 14.3. The matrix and weights of different EHPs can be 
seen in Jaiswal et al. (2013) (Fathizad et al. 2014). The priority-wise sub-watersheds 
of the Kodar are presented in Fig. 14.6.
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Fig. 14.4 Test sites for soil investigation

14.8.2 Module-II CAT Plan for Soil Water Conservation 
Measures 

Land use, soil, slope, and geomorphology maps were used to create the CAT plan 
for the Kodar catchment. For the identification of regions amenable for agronomic 
and biological measures, standard criteria were employed. For the crossing map, an 
attribute table in ILWIS was created to select appropriate locations under different 
gram panchayats in the river basin. Check dams, gully plugs, Nala plugs, and boulder 
bunds have all been suggested as mechanical treatments in the catchment. Figure 14.7 
depicts the CAT plan of the study area, which includes ideal locations for agronomic 
and biological soil conservation measures, as well as the positioning of mechanical 
measures. The CAT plan consists of the following important measures along with 
agronomic measures contour farming, mulching, etc., in all agriculture fields.
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Table 14.2 Soil properties of soils in Kodar reservoir catchment 

Site Village Soil 
type 

Sat. hyd. 
cond. 
(cm/h) 

Dry 
density 
(gm/cm3) 

Moisture 
content 
(%) 

Bulk 
density 
(gm/cm3) 

Specific 
gravity 

Site-1 Kherwar Sandy 
loam 

34.07 1.51 2.48 1.55 2.21 

Site-2 Patewa Sandy 
loam 

7.77 1.47 3.97 1.53 2.53 

Site-3 Thumsa Sandy 
loam 

15.38 1.51 1.08 1.52 2.52 

Site-4 Nawapara Silt 
loam 

11.94 1.40 2.68 1.44 2.27 

Site-5 Gabod Silt 
loam 

25.31 1.50 3.24 1.55 2.59 

Site-6 Khallari Silt 
loam 

2.37 1.29 3.42 1.34 2.56 

Site-7 Saraipali Silt 
loam 

7.77 1.37 4.81 1.44 2.50 

Site-8 Koma Silt 
loam 

0.10 1.20 7.18 1.29 2.55 

Site-9 Paterapali Sandy 
loam 

10.50 1.49 2.29 1.51 2.47 

Site-10 Churki Sandy 5.18 1.43 4.82 1.50 2.54 

Site-11 Nawadih Sandy 
loam 

88.95 1.51 1.55 1.53 2.59

0.33 
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0.2 

0.16 
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0.04 0.03 0.02 
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Fig. 14.5 Weights of different EHPs used in prioritization
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Table 14.3 Average values of factors for different land uses in the RUSLE model 

S. No. Land use Area (km2) R K SL C P Loss (t/ha/yr) 

1 Dense forest 48.38 426.28 0.18 2.52 0.18 0.8 27.16 

2 Water body 5.81 428.60 0.18 0.29 0.28 0 0.00 

3 Scrub 1.22 424.51 0.16 3.77 0.20 0.8 40.02 

4 Agriculture 243.86 429.93 0.18 0.37 0.23 0.59 3.98 

5 Settlement 7.88 429.32 0.18 0.23 0.22 1.00 3.93 
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Fig. 14.6 Priority sub-watersheds in Kodar catchment

a. Agronomic measures    b. Mechanical measures 

Fig. 14.7 CAT plan for SWC measures in Kodar catchment



294 R. K. Jaiswal et al.

Afforestation: 101.61 ha, 
Agroforestry: 114.86 ha, 
Grazing field: 11.41 ha, 
Gully plugs: 37, 
Nala plugs: 22, 
Boulder bunds: 21, 
Check dams: 6. 

14.9 Conclusions 

Erosion is a serious menace due to increasing population, changes in climatic patterns, 
and more pressure on the natural resources for the luxury lifestyle. Based on MCDS, 
the current study has demonstrated a holistic framework for identifying environmen-
tally stressed sub-watersheds and regionally dispersed soil and water conservation 
methods. The suggested framework has been implemented in the Kodar reservoir 
catchment of Chhattisgarh state of India. The catchment of Kodar reservoir is infested 
mainly by agriculture and has a higher erosion due to ploughing of the field just before 
the start of the monsoon. The detailed soil analysis on eleven sites indicated the loamy 
nature of soils suspectable to the high rate of erosion in the catchment. SAHP-based 
choice support has been used to identify priority areas where nine erosion hazard 
parameters were analyzed and concluded that the soil loss has a maximum impact 
on prioritization. According to the AHP evaluation, more than 21 sub-watersheds 
that cover more than 100 km2 of the Kodar catchment have high vulnerability and 
need scientifically designed conservation. The proposed CAT plan, which includes 
the option of agroforestry, may be helpful to the rural community in terms of addi-
tional revenue and watershed environmental health. The farm pons which may be the 
source of catching water for dryland irrigation has been suggested in 41 km2 areas. 

Recommendations 

The following are the recommendations from the study: 

1. No single parameter can be found the most appropriate for the identification of 
environmentally stressed areas. 

2. The multi-criteria decision support like the analytical hierarchal process can be 
used conveniently in decision support. 

3. The selection of criteria for identification of stressed areas are region-specific 
and knowledge and geological setup, soils, slope, geomorphology, and land use 
should be used for the selection of appropriate environmental hazard parameters. 

4. The RS and GIS can be used conveniently for the determination of the spatial 
distribution of different parameters and the identification of the most appropriate 
soil conservation measures. 

5. Climate change may further aggravate soil erosion and the impact of climate 
variability and extreme events on soil erosion processes should be studied.
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6. Soil erosion may reduce crop yield and affect reservoir performance, the identi-
fication of stressed sub-watersheds/areas is important to save the investment cost 
of soil conservation measures. 

7. The selection of single criteria may lead to erroneous results and therefore multi-
criteria decision support shall be one of the best methods to select priority sub-
watersheds/areas. 

8. As identification of suitable areas and site-specific soil conservation measures 
is a difficult task, the weighted overlay technique-based design can be used to 
identify appropriate soil conservation measures. 
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Chapter 15 
Geospatial Technology for Estimating 
the Physical Vulnerability of Building 
Structures to Natural Hazards 

K. Nakhapakorn, P. Q. Giang, A. Ussawarujikulchai, K. Tantrakarnapa, 
S. Jirakajohnkool, T. Weerasiri, N. Srichan, T. Maneekul, 
and P. PhramahaTawee 

Abstract Climate change causes major effects on the environment and nature as it 
leads to increasing urban flood hazards. Flooding is the most frequent natural hazard 
that occurs in the Asia–Pacific region where an increasing number of people are 
choosing to live in floodplain areas. Communities living in monsoonal regions have 
learned to live with floods. The most important component of flood management is 
assessing flood vulnerability on an urban scale. This study conducted flood vulner-
ability assessment and analysis of physical building structures in Warin Chamrap 
municipality, Thailand. GIS-based method of estimating the vulnerability of build-
ings to floods was employed for flood vulnerability assessment. The results identified 
building structures in the flood-prone area that are at extreme risk. The study found 
that 87 households were at a moderate to extreme risk in the extreme flood vulner-
ability area and 130 households with structural damage. The flood vulnerability
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index (FVI) is a powerful tool for a better understanding of community and building 
structures and to identify adaptations for vulnerability reduction. However, the FVI 
is limited by a number of factors that reduce its capacity as an accurate and prac-
tical tool for decision-makers. For future development, geospatial data visualization 
and GIS-based flood vulnerability assessment techniques should be considered as a 
method to provide a baseline to guide further study. 

Keywords Geospatial technology · Flood vulnerability index · Natural hazard ·
Physical vulnerability 

15.1 Introduction 

As disaster risks from severe floods continue to increase and affect communities 
because of climate change, the relationship between disaster risk and human devel-
opment—such as poverty reduction, affordable housing, environmental degradation, 
population growth and mitigation, and rapid urbanization—has become increasingly 
important (Booth et al. 2020; Hallegatte et al. 2020; Intergovernmental Panel on 
Climate Change (IPCC) 2014, 2019; Lewis  2012; Raikes et al.  2021; Schipper 
and Pelling 2006; Sperling and Szekely 2005; UNDP 2020; UNDRR 2019; United 
Nations Office for Disaster Risk Reduction (UNISDR) 2009; Wong et al. 2014; 
World Conference on Disaster Reduction on Behalf of the Vulnerability and Adapta-
tion Resource Group 2005). As Cutter et al. (2003) explain, disaster vulnerability is 
a combination of social and physical conditions that make individuals and commu-
nities susceptible to harm. A variety of approaches defined by many researchers to 
evaluate vulnerability are available (Azotea et al. 2017; Balica et al. 2012; Barredo 
and Engelen 2010; Bizimana and Schilling 2009; Brinckerhoff 2009; Deckers et al. 
2009; Kumar and Bhattacharjya 2020; Len et al. 2018; Nasiri et al.  2019; Noren et al. 
2016; Papathoma-Köhle et al. 2019; Phumkokrux 2016; Phuthong 2014). Global 
Facility for Disaster Reduction and Recovery (2014) and UNISDR (2015) refer to 
vulnerability as the characteristics and circumstances of a community, system, or 
asset that make it susceptible to the damaging effects of a hazard. Vulnerability is 
one of the defining components of disaster risk. There are many aspects of vulner-
ability, arising from various physical, social, economic, and environmental factors. 
For example, poor design and construction of buildings, inadequate protection of 
assets, lack of public information and awareness such as weather forecasts, limited 
official recognition of risks and preparedness measures, and a disregard for wise 
environmental management. 

Flooding is the most frequent hazard worldwide. It is a big problem if the flood 
magnitude is larger than expected. It causes loss of homes, infrastructure, and building 
damage in the flood-prone areas, especially in rural areas that lack flood control and 
protection. Hence, there is a need to decrease the vulnerability of buildings and infras-
tructure. Therefore, enhancing our understanding of vulnerability and developing 
methodologies to assess flood vulnerability is of critical importance.
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Fig. 15.1 The steps involved in performing a risk assessment. Modified from Dwyer et al. (2004) 

A flood vulnerability index (FVI) enables the assessment of vulnerability to floods 
(Azotea et al. 2017; Balica et al. 2012; Kappes et al. 2012; Kumar and Bhattacharjya 
2020; Len et al. 2018; Nasiri et al.  2019; Papathoma-Köhle et al. 2019; Xiao et al. 
2020). FVI is an important approach for raising public awareness. This is because 
there are several factors influencing vulnerability including human settlement condi-
tions, socio-economic patterns, infrastructure, and policy. A summary of a physical 
vulnerability assessment, including building vulnerability, social vulnerability, and 
economic vulnerability models is shown in Fig. 15.1. 

Thailand is vulnerable to many natural and human-induced hazards such as floods, 
landslides, and storms. In the 69 years from 1951 to 2019, tropical storms including 
typhoons and depressions occurred 200 times in Thailand. Among the hazards, 
flooding is the most frequent natural hazard that occurs in Thailand, and almost 60% 
of the country is flooded at least 10 times per year (ADPC 2011). The most frequent 
cause of flooding is continued heavy rain due to tropical cyclones that sweep through 
the country and neighboring regions during the monsoon season. The impact of heavy 
rain across a wide area causing flooding and windstorm damage to properties and 
households has been reported (ADPC 2011; Anang and Braun 2021; Deckers et al. 
2009; Department of Marine and Coastal Resources 2014; Díez-Herrero and Garrote 
2020; Duriyapong and Nakhapakorn 2011; Gurukul and Nakhapakorn 2014; Kappes 
et al. 2012; Len et al. 2018; Nasiri and Shahmohammadi-Kalalagh 2013; Nasiri et al. 
2019; Papathoma-Köhle et al. 2019; Phutthong 2011; Royal Irrigation Department 
(RID) 2012; Sarajit et al. 2015). Increasing rainfall will add to problems of flooding in 
areas not adequately designed for flood protection from rivers (Crichton and Ingleton 
1999). Many of Thailand’s flood defenses are antiquated and are in need of repair to 
reduce the flood hazards. 

FVI can be aided by geoinformation technology. Geoinformation technology is 
widely used for data visualization and technical analysis of the environment, urban 
planning, recreating the past, 3D city modeling, biodiversity monitoring, access to 
geo-data for citizens and tourists, forest biomass mapping, public health, military,
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transport network planning, and management, agriculture, meteorology, and climate 
change, oceanography and coupled ocean and atmosphere modeling, business loca-
tion planning, architecture and, telecommunications, criminology and crime simu-
lation, aviation, and renewable energy (Amade et al. 2018; Fuhrmann et al. 2008; 
Kundu et al. 2020; Kuzhelev 2013; Lemmens 2011; Levina et al. 2017; Malczewski 
and Rinner 2017; Morkul et al. 2018; Neussner et al. 2008; Petrescu 2007; Prasan-
nakumar et al. 2012). According to Gomarasca (2010), “Geoinformation technology 
or Geomatics is defined as a systemic, multidisciplinary, integrated approach to 
selecting the instruments and the appropriate techniques for collecting, storing, 
integrating, modeling, analyzing, retrieving at will, transforming, displaying, and 
distributing spatially georeferenced data from different sources with well-defined 
accuracy characteristics and continuity in a digital format”. Therefore, the objec-
tive of this research was to assess the risk and physical vulnerability of building 
structures to floods at the household level in a riverside communities. The study 
focused on the process of indicator selection and weighting based on the importance 
of building characteristics by using a geospatial technique. This research focused 
only on building vulnerability models. 

15.2 The Study Area 

The 2019 flooding in Thailand’s northeastern province of Ubon Ratchathani is the 
worst in 17 years, with the level of the Moon River measured at 10.97 m, higher than 
the record set in 2002. The condition of riverside villages in PibunMangsaharn and 
Warin Chamrap districts is of serious concern which has left several communities 
in low-lying areas as islets surrounded by water. Warin Chamrap municipality in 
Ubon Ratchathani province is in the Warin Chamrap district which is located on 
the Mun river bank in Thailand (Fig. 15.2). There are six community zones in the 
Warin Chamrap municipality, classified as the commercial zone, residential zone, 
peri-urban, newly developed residential zone, riverside community, and old town. 
In 30 years from 1971 to 2000, the average yearly rainfall amount was 1581.4 mm. 
During the rainy season, northeast monsoons increase the frequency of flood. Ten 
years of collected data revealed that the Mun river is the source of Ubon Ratchathani 
province with the most severe flood occurring in 2019.

15.3 Methodology 

The vulnerability of a building can be described by combining the geospatial data 
with measurable attributes relating to varying degrees of physical building vulner-
ability. The indicators would be sustained during floods. By characterizing these 
vulnerability attributes, a relationship (i.e., building vulnerability equation) is estab-
lished between the buildings and the flood hazard. The building vulnerability equation
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Fig. 15.2 Location map of the study area
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provides the means of calculating the vulnerability score of a building. The steps are 
as follows: (1) Identify vulnerability attributes and grading of relevant hazards. (2) 
determination of physical vulnerability of the building structure and establishing the 
relationship between attributes. (3) Calculate vulnerability and develop maps. 

15.3.1 Identification and Grading of Relevant Hazards 

The flood vulnerability and risk assessment have been carried out in this chapter 
based on quantitative statistical techniques and geospatial technology. During a flood 
event, delineation maps can show flooded areas and can be compared with water 
depth from satellite imageries. Vulnerability assessment data was divided into two 
categories: primary and secondary data: (1) Primary data is data collected from field-
work surveys using building location coordinates obtained from Global Navigation 
Satellite System (GNSS) with mobile application, (2) Secondary data was gathered 
from GISTDA using10 years of flood maps. After collecting data from the study area, 
all data was re-grouped, classified, and weighted. Many riverside communities have 
houses built in floodplains when flooding was less common and these communities 
are still allowing developments in areas at a high risk. 

In an attempt to cope with this historic and ongoing problem, flood prevention 
and mitigation by using risk assessment methods adapted from the risk assessment 
process of disasters of ISO (2009). It is a process that helps people to understand the 
risks of natural hazards such as earthquakes and flooding. This study was interested 
in studying the risks and vulnerabilities, as well as the adaptation of flood-affected 
communities, found in Ubon Ratchathani province. Households were selected in 
order to identify specific damage from physical vulnerability; specifically, how such 
households would be affected differently by each type of disaster. For example, the 
difference in building material from one structure to the next has an effect on the 
building structure damage. In the case of floods, it is important to understand how the 
choice of building material impacts the vulnerability of building structure types. The 
Engineering Institute of Thailand under H. M. the King’s Patronage (EIT) collected 
survey data for each household to obtain general information about each residence, 
such as the physical data of the house structure after major floods in order to identify 
valuable information about the potential need for household adaptation when faced 
with natural hazard. 

The methodology of this research applied survey and GIS techniques to assess 
the vulnerability and risk of communities by gathering and analyzing spatial and 
non-spatial data. Geospatial data visualization and analysis was used extensively for 
identifying and measuring exposure accumulations and hazard data from various 
sources, including satellite data. In the case of floods, it is important to understand 
how the choice of building material impacts the vulnerability of building structures. 
The researcher collected survey data for each household to obtain general information 
about each residence, such as the physical data of the house structure before and after 
major floods in order to identify valuable information about the potential need for
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Fig. 15.3 Risk assessment conceptual framework diagram of the physical vulnerability of building 
structures to floods 

household adaptation when faced with natural hazards. The probability and severity 
of natural hazards were then modeled in proper ways to establish large databases of 
exposure and vulnerability information. 

In the final process, the research conducted a survey with GPS and GIS techniques 
(geospatial l data analysis and visualization) to assess vulnerability and risk for 
communities, including assessment of household adaptation after a severe natural 
disaster. Then, the risk assessment was undertaken together with a risk map of impact 
areas in order to analyze and reduce the negative impact associated with violence 
from new natural hazards as shown in Fig. 15.3. 

15.3.2 Determination of Physical Vulnerability of Building 
Structures to Floods 

It is important that the risk assessment of communities on natural hazards, such 
as storms, floods, and storm surges, considers the physical factors of the area as 
well as the social, economic, and cultural factors of the people living in the area 
(Andrade Pérez et al. 2010; Dwyer et al. 2004; Vahanvati 2018; Withuntat et al. 2016; 
Zezheng et al. 2020). The physical vulnerability assessment or building vulnerability 
indicators are shown in Table 15.1. Risk assessment refers to the analysis of variance 
in order to establish the probability of a certain outcome from an uncertain event
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including the magnitude or probability of a hazard, the building material, building 
status, damage and crack in the structure, floor material, number of stories, foundation 
types, flood depth, and flood frequency. The vulnerability level can indicate the level 
of capacity. The effect of flood depth may be different materials and construction 
styles. A high score shows high vulnerability and indicates low capacity, while a low 
score shows low vulnerability and indicates high capacity. 

Risk matrix is an uncomplicated risk analysis result that uses likelihood analysis 
and capacity effects of a qualitative hazard derived from the hazard likelihood and 
impact level. High numbers derived from matrix, indicate a high-risk level, these 
risk values are useful for showing or comparing risk levels. Risk evaluation is a risk 
comparison process between the results of risk analysis with the risk criteria as shown 
in Table 15.2.

Table 15.1 The physical vulnerability of building structure indicators 

Indicators Vulnerability level 

Very low Low Moderate High Very high 

1 2 3 4 5 

Building 
material 
types 

Concrete Concrete and 
mixed 
wood-concrete 

Masonry Wood Bamboo, 
galvanized 
iron 

Building 
status 

Very good Good – Bad Very bad 

Residence 
damage 

Not 
damaged 

Slightly damaged Moderately 
damaged 

Extensively 
damaged 

Completely 
damaged 

Cracks in 
structure 

No – – – Yes 

Floor 
materials 

Concrete – – – Wood, 
bamboo 

Number of 
stories 

>2 stories – 2 stories – 1 stories  

Flooding 
frequency 
(10 years 
period) 

None 1–2 times 3–4 times 5–6 times >7 times 

Flood depth <0.5 m 0.5–1 m 1–2 m >2 m 

Presence of 
foundation 
type 

Yes No 

Sources Modified from Ruiter et al. (2017), Department of Disaster Prevention and Mitigation 
(2014), Department of Disaster Prevention and Mitigation (2015), Kappes et al. (2012), Krishna-
murthy et al. (2011), Godfrey et al. (2015), Papathoma-Köhle et al. (2019), Taramelli et al. (2015), 
Tran et al. (2009) 
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Table 15.2 Level of risk assessment matrix 

Frequency Level of severity 

Likelihood None 
(1) 

Low 
(2) 

Moderate 
(3) 

High 
(4) 

Extreme (5) 

Very slightly opportunity (1) 
Impossible (Risk is unlikely to occur) 

1 2 3 4 5 

Less opportunity (2) 2 4 6 8 10 

Moderate opportunity (3) 
Possible (Risk will likely occur) 

3 6 9 12 15 

High opportunity (4) 4 8 12 16 20 

Very high opportunity (5) 
Probable (Risk will occur) 

5 10 15 20 25 

Extreme (score 15–25), moderate (score 5–14), low (score 1–4) 
Sources ADPC (2011), IEC (2018) 

15.3.3 Calculation of the Vulnerability Index (VI) 

Godfrey et al. (2015) explained that the vulnerability index (VI) of each physical 
vulnerability of a building to floods is calculated using the normalized weights of the 
characteristic indicators (Ai) and the normalized weights of the observed indicator 
values (aj), as shown in Eq. (15.1): 

VI = 
nΣ 

i, j=[0,1] 

Aia j (15.1) 

where, Ai is the normalized weight of the indicators, and aj is the normalized weight 
of the indicators’ observed value. 

15.4 Risk Assessment for Physical Vulnerability of Building 
Structures to Floods 

15.4.1 The Results of Hazard Assessment 

Flood map data of the Ubon Ratchathani province from 2010 to 2019 was collected 
from Geo-Informatics and Space Technology Development Agency (GISTDA). Data 
was collected in GIS format, which was published online on the GISTDA website and 
flood map data accuracy was verified by a field survey. Then, the data was corrected 
and used to make a hazard map by dividing the intensity into five levels. This research 
was focused on the Warin Chamrap municipality, Warin Chamrap district in Ubon 
Ratchathani province. The analysis showed that the areas had a flood frequency
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Table 15.3 Flooding frequency areas in Warin Chamrap municipality, Ubon Ratchathani province 

District name Intensity of flooding Total (Acre) 

Level 

Very low Low Moderate High Extreme 

Non-flood 1–2 years 
flood 

3–4 years 
flood 

5–6 years 
flood 

≥7 years 
flood 

Bung Mai 3699.6 1049.5 203.0 56.4 6.4 5014.9 

Bung Wai 8258.2 2612.7 594.5 401.7 28.3 11,895.3 

Huai Kha 
Yung 

9933.4 1184.5 208.7 34.2 20.6 11,381.4 

Kham Khwang 12,048.8 4276.7 426.6 191.8 158.7 17,102.6 

Kham Nam 
Sap 

802.4 1018.1 528.6 174.6 24.5 2548.2 

Khu Mueang 6891.9 1810.6 923.2 889.7 429.9 10,945.3 

Mueang Si 
Khai 

12,723.1 1706.7 598.3 482.4 91.9 15,602.4 

Non Non 4531.7 2475.4 836.5 576.8 295.4 8715.8 

Non Phueng 4361.9 2179.8 658.7 523.0 124.2 7847.5 

Nong Kin 
Phlen 

3856.7 2449.3 1059.4 1414.5 1098.4 9878.3 

Pho Yai 11,144.4 2581.5 1480.3 404.2 54.6 15,665.0 

Sa Saming 12,964.9 1115.1 205.0 0.0 0.0 14,285.0 

Saen Suk 4819.0 1814.2 342.5 50.0 0.0 7025.7 

Tha Lat 5761.6 1618.8 434.1 87.6 9.9 7911.9 

That 2033.1 1198.8 502.9 98.9 49.8 3883.4 

Municipality 1909.4 1064.4 229.8 60.7 4.7 3268.9 

Total (Acres) 105,740.0 30,156.0 9232.0 5446.4 2397.2 152,971.6

of 1–2 years for most areas, accounting for 1064.4 acres in the Warin Chamrap 
municipality. A flood frequency of 3–4 years was found for 229.8 acres, followed 
by the flood frequency of 5–6 years, which accounted for 60.7 acres. The area with 
flood frequency of seven or more years was the smallest, accounted for 4.7 acres. 
Non-flood-affected areas accounted for 1909.4 acres. These are shown in Table 15.3 
and Fig. 15.4. 

15.4.2 Results of the Vulnerability Assessment 

Nine different indicators that influence property damage (building material, building 
status, residence damage, cracks in the structure, floor material, number of stories, 
foundation types, flood depth, and flood frequency) were assessed in 324 surveyed
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Fig. 15.4 Flooding frequency area in Warin Chamrap municipality, Ubon Ratchathani province, 
Thailand
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households selected for this study. In the study area, 170 households were constructed 
from mixed wood-concrete materials. The number of households with cracks caused 
by flooding was 131. A total of 146 households were at very high risk during the 
10 years flood period with 195 households having very high flood depths of more 
than 2 m as shown in Table 15.4 and Fig. 15.5. According to Ettinger et al. (2016) 
as well as Thouret et al. (2014) used indicators to assess the physical vulnerability 
indices based on indicators such as number of stories, building footprint, shape of 
city block, and building density as well as distance from channel. 

Uncomplicated risk analysis is derived from a risk matrix, using estimates of 
the probability and potential effects of a qualitative hazard. There is a multiplicity

Table 15.4 The number of building in each of the hazard zones 

Factors Indicators Rank level Flood frequency Total 

1–2 years 3–4 years 5–6 years 

Building material Concrete 1 69 13 0 82 

Concrete and mixed 
wood-concrete 

2 147 22 1 170 

Masonry 3 8 0 0 8 

Wood 4 51 6 1 58 

Bamboo 5 5 1 0 6 

Crack in structure No 1 170 21 2 193 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

Yes 5 110 21 131 

Number of floors >2 stories 1 2 0 0 2 

2 0 0 0 0 

2 stories 3 150 25 1 176 

4 0 0 0 0 

1 story 5 128 17 1 146 

Foundation type Yes 1 203 32 0 235 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

No 5 77 10 2 89 

Flood depth None 1 31 4 0 35 

<0.5 m 2 0 0 0 0 

0.5–1 m 3 0 0 0 0 

1–2 m 4 92 2 0 94 

>2 m 5 157 36 2 195
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Fig. 15.5 The physical vulnerability of building structures in flood risk areas, a building materials, 
b crack in the structure, c number of stories, d foundation types, and e flood depth
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Fig. 15.5 (continued)
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Fig. 15.5 (continued)

of possibilities of a disaster, which is derived from the assessment data. The level 
of impact is derived from the vulnerability analysis. As shown in Table 15.5 and 
Fig. 15.6, the vulnerability results are listed using classifications that are consis-
tent with the definitions of impact on the risk matrix adapted from the ISO Risk 
Assessment Process (2009) (https://www.iso.org/standard/44651.html). The results 
in the table indicate the level of risk and indicate extreme risk levels in some areas. 
Each building was assigned with a score for each indicator as described in detail 
in Table 15.1. These risk values were useful for showing trends or comparing risk 
levels, as shown in Table 15.2. The levels of risk assessment matrix are: extreme 
(Bold), moderate (Bolditalic), and low (Italic) risk level. From Table 15.5, the results 
show that most households had an extreme vulnerability. Eighty-seven households 
had building materials at a moderate to extreme risk of damage in the extreme flood 
vulnerability area and 151 concrete houses were at an extreme level of flood vulner-
ability area. A total of 130 households in an extreme flood vulnerability area had 
cracks in their structure.

https://www.iso.org/standard/44651.html
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Table 15.5 The physical vulnerability indicators in flood risk areas (households) 

Physical vulnerability indicators Risk level Risk level of flood 
vulnerability 

Total (HH) 

Extreme Moderate 

Building material Extreme 1 1 2 

Moderate 86 7 93 

Low 151 78 229 

Crack in structure Extreme 21 0 21 

Moderate 109 1 110 

Low 108 85 193 

Number of floors Extreme 18 0 18 

Moderate 219 85 304 

Low 1 1 2 

Foundation type Extreme 12 0 12 

Moderate 76 1 77 

Low 150 85 235 

Flood frequency Extreme 2 0 2 

Moderate 39 3 42 

Low 197 83 280 

Flood depth Extreme 38 0 38 

Moderate 188 63 251 

Low 12 23 35 

Note From Engineering Institute of Thailand under H.M. the King’s Patronage (unpublished data)

15.5 Conclusion 

In mapping vulnerability, consideration must be given to the issue of scale, which 
can be interpreted in a variety of ways. Flood vulnerability risk levels of high risk 
and very high risk, call for immediate action or risk management strategies. The 
dynamic and variable nature of human behavior and culture should be considered 
throughout the risk management process. Tingsanchali (2012) found that integrated 
urban flood disaster and risk management for developing countries are mostly in 
terms of reactive responses in prevailing disaster situations. Moreover, urban areas 
are complex and dynamic systems that are exposed to various hazards (Mebarki et al. 
2012). Although the risk management process is often presented as sequential, in 
practice it is an interactive method. In this study, the importance of households that are 
single-story houses is emphasized because they are more vulnerable to flooding than 
houses with lifted floors. This is due to climate change and the more severe disasters, 
which traditional houses are not strong enough to handle. Furthermore, climate is 
an important factor that affects the vernacular architecture of local housing. Policies 
and practices for disaster risk management should be based on an understanding of
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Fig. 15.6 Physical vulnerability index in flood risk area

disaster risk in all dimensions of vulnerability, coping capacity, exposure of persons 
and assets, hazard characteristics, and their possible effects at the relevant social and 
spatial scale on the ecosystem. 

The local government organizations should request cooperation from govern-
ment agencies with knowledge, information, and an analysis system for each type 
of disaster in the area. Mebarki et al. (2012) presented that beyond the damages 
that might be suffered due to its vulnerability, resilient territory needs adequate and 
efficient organization. Moreover, the risk analysis of each area requires statistical 
data, scientific knowledge, and technological expertise together with local wisdom. 
A goal for the local government organizations is to create an accurate and effective 
safety culture for the departments and communities in the area.

• Monitoring and assessment of the damage in all dimensions, such as the structure, 
economic, and agricultural, for the benefit of planning, repair, and restoration. 

• Disaster assessment in order to conduct a risk analysis and measurement in the 
future. 

• The goal of the local government organization on disaster management is to create 
communities of knowledge and understanding to cope with disaster; furthermore, 
this enables local communities to manage themselves to recover from the effects 
of disaster quickly.
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Fig. 15.7 Rehabilitation of physical and mental health with religious leaders. Source Photos by 
Dr. Phramaha Tawee Potad, 2019 

• Rehabilitation of physical and mental health with religious leaders or monks, as 
shown in Fig. 15.7. 

Research studies can help identify areas at high risk of flooding with physical 
building vulnerability indicators, that would be of great benefit to the province’s 
disaster planning and management. It is important to share data with the communities 
and civil society networks to raise awareness and alert communities about the risks 
and possible action that is needed. In addition to considering the direct impact and 
vulnerabilities of disasters, socio-economic risks and damage should be assessed. 
The analysis can be taken in the future as it improves knowledge about mitigation 
and preventative measures to reduce social vulnerability to flooding. 

15.6 Future Directions 

Nowadays, geoinformation technology and geospatial data visualization can be 
further strengthened in order to solve complex social, industrial, and manage-
ment activities in the built environment. Furthermore, it becomes a very impor-
tant technology for decision-makers across a wide range of disciplines, industries, 
the commercial sector, environmental agencies, local and national governments, 
researchers and academia, and national survey and mapping organizations, such as 
the Engineering Institute of Thailand or engineering volunteers, International orga-
nizations, the United Nations, emergency services, public health and epidemiology, 
crime mapping, transportation and infrastructure, and information technology indus-
tries. Many governmental and non-governmental agencies have started to use spatial 
data for managing their day-to-day activities. 

This study only examines the risk and the physical flood vulnerability of housing 
structures, so future research should study other vulnerability indicator categories, 
such as economic and social vulnerability indicators, and create a flood simula-
tion model and an evacuation map. This research presents a risk analysis method 
for flood areas which can be analyzed in various ways, including GIS-based anal-
ysis for assessing the physical vulnerability of building structures to floods. The 
produced map of flood-prone by using GIS identifies the areas and settlements at 
high-risk flooding. The flood vulnerability index can be used in combination with
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other decision-making tools and include participatory methods with the stakeholder 
of identified as vulnerable areas. By considering the time and scope of the required 
research, future research should study several fields and may need to collaborate with 
other methods, such as engineering economics. Capacity assessment on the phys-
ical adaptability of household structures is based on vulnerability, with communities 
with a high vulnerability level having a low level of adaptability. On the other hand, 
communities with a low vulnerability have high adaptability. A risk map should be 
considered in the future to possibly develop a warning system that is effective in 
reducing the risk to people and property in an urgent response. The maps should 
also be used to increase the awareness of risk areas and preparedness to deal with 
a flood. Measuring and mapping the physical vulnerability of building structures 
to flood could become part of the efforts of the authority to assess flood mitiga-
tion. Knowing the local building structure vulnerability can guide decision-makers 
in forming mitigation and adaptation policies that help to improve the quality of life 
of the communities. In addition to thinking about mitigation of the risk, a strategic 
environmental assessment should be prepared for immediate action and plans. The 
national action adaptation plan focusing on this matter should be transformed from 
the national master plan of climate change, especially in the risk areas. The integra-
tion of Top-down and Bottom-up approaches should be considered. The basis of risk 
management and understanding of the flood phenomenon should be concentrated on 
mitigating the damage caused by unpredictable events. 
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Chapter 16 
Cooling Potential Simulation of Urban 
Green Space Using Remote Sensing 
and Web-Based GIS Integration in Panat 
Nikom Municipality, Thailand 

Chanida Suwanprasit, Sakda Homhuan, and Wanpen Charoentrakulpeeti 

Abstract The most important local and global change driving force is urbanization 
because it progressively replaces natural surfaces with built surfaces. These causes 
enhance the urban heat island phenomenon where the temperature in the urban area 
is higher than the temperature in the countryside around the city. Increasing urban 
green space can play an important role in reducing the urban heat island effects and 
providing comfort to the nearby area. It can also contribute to the United Nations 
Sustainable Development Goals (SDGs), especially SDG 11, which aims to make 
cities and human settlements inclusive, safe, resilient, and sustainable. This study 
aimed to develop a web-based simulation platform for examining local temperature 
changes from the change in the proportion of green space in the city. The Worldview-
3 imagery was used for green space area extraction through NDVI and land surface 
temperature from Landsat 8 OLI. The relationship between surface temperature and 
the green area was studied with NDVI using regression analysis to develop an equa-
tion for land surface temperature calculated according to the changes in the green 
area. The web-based GIS platform was developed using open source with Geoserver 
and LeafletJS using an equation developed for exploring and simulating the cooling 
potential of urban green spaces through a web user interface. The temperature was 
more related to the NDVI, which can refer to the quality of the green area rather 
than the size of the green space. It was concluded that the cooling potential of such 
green areas is determined mainly by the quantity and quality of the green space, 
which is essential to increasing or decreasing the local temperature and ecological 
environment. Setting the target for reducing the temperature to the comfort level 
might require tools that allow urban policymakers to know the level of temperature 
in the area and the temperature drop changes by increasing green area proportion to 
determine how much more green space the city has needs. 

Keywords Cooling potential · Urban green space · Remote sensing · Web-based 
GIS · Local temperature
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16.1 Introduction 

Green spaces play an important role in urban sustainability, recognized in the United 
Nations Millennium Sustainable Development Goals (UN SDGs), especially SDG 
11, which aims to make cities and human settlements inclusive, safe, resilient, and 
sustainable. Urban green is a significant factor to support a good quality of life for 
people, especially in the city. In terms of ecosystem services, green space plays a 
significant role in controlling urban climate by utilizing cooling conditions in the 
city, and it has been known as the effect of urban green spaces (Fryd 2011). 

Several studies have been published on the available strategies for reducing the 
UHI effect, including the use of vegetation cover at various scales such as trees, 
shrubs, and lawns, stack night ventilation, the use of water bodies, and the use of 
materials with high albedo ratings for pavement and other ground surfaces (Aram 
et al. 2019). However, the extent of its influence on the creation of cool temperatures 
has remained unclear. Previous research on the cooling effects is important for urban 
green conservation and development. However, evaluating the cooling effects on 
urban areas relevant to various aspects and dynamics in time and space necessitates 
modern ways to apply and explain the status of cooling from urban green space. 
Measurements (field measurements, scale models, and thermal remote sensing) and 
computer simulation have already demonstrated the benefit of green infrastructure 
in lowering urban thermal islands (Aram et al. 2019). 

While green space is cooler than built-up areas, cooling varies depending on the 
surrounding components and location. The three primary elements that affect the 
cooling levels of urban green spaces are as follows. Firstly, intensive urban land 
use, primarily build-up areas, contributes a substantial amount of anthropogenic 
heat to the atmosphere, while green areas contribute cooling effects—for example, 
urban greening in Hong Kong helps cool the air and provides shade in the high-
densely living environment (Ng et al. 2012). Secondly, the land cover with a high 
concentration of vegetation produces the cooling process in urban areas. It has been 
found that vegetation and water can alleviate the urban heat island effect (Ma et al. 
2021). Lastly, the urban geometry with low-rise buildings and wide paths promotes 
well ventilation, enhancing the cooling process of green spaces. Therefore, the green 
space’s spatial component plays a significant role in the cooling conditions of urban 
green areas. 

Meanwhile, geographical location has also influenced the cooling situation of 
green space differently. In the tropical region, green areas will more distinctly present 
the effect of a cooling process than the temperate region. The cooling effect of 
green areas has been verified for specific places. The highest heat island intensity 
was in the tropical environment to a great extent. UHI in tropical was higher in 
a temperate climate with an intensity value exceeding 6 °C (Amorim and Dubreuil 
2017). However, one area cannot be addressed for another area. The advent of remote 
sensing and web-based GIS pave the way to study the cooling effect for a given site. 
With available spatial data provided from satellite base measurement, the requirement
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of various spatial data can be acquired for a given study area. Meanwhile, web-
based GIS will help create correlation equations of a proportion of green areas and 
pertinent parameters and then apply those equations to present the results of the 
cooling situation in any given site with different sets of parameter data. 

This chapter aims to describe the effect of urban green space on the cooling effect 
in Panat Nikom Municipality, Chon Buri Province, Thailand, using remote sensing 
and a web-based GIS. The cooling effect on urban areas will serve as an incentive 
for legislators to understand the value of green spaces in cities and, ideally, to decide 
in favor of integrating green space effects on urban growth. 

16.2 Urban Climate and Green Space Relationship 

Urban climate has been roughly considered at two levels: below and above roof-
level morphology (Oke 1987). The former is called “the urban canopy layer (UCL)” 
while the latter is called “the urban boundary layer (UBL)”. The UCL is governed 
by site-specific and the mean height of buildings and trees characteristics and oper-
ating processes at a micro-scale. The site-specific characteristics are accountable 
for intrinsic properties, thermal properties, moisture status, radiative capability, 
and the aerodynamics of urban morphology. As UCL can be separated into two 
scales: “micro-scale” and “local-scale,” the intrinsic properties play an important 
role in producing micro-climate and integrating that into local climate. The UBL is 
controlled by the existence of the composite urban landscape: land use, land covers, 
and landforms, operative at a local to meso-scale. This level is a function of the land 
use zone, in which all land use in the entire city can be mixed and referred to as 
meso-scale (Arnfield 2003) (Fig. 16.1).

The urban climate was analyzed in terms of energy movement. Airflows are crit-
ical in pushing energy circulation from a UCL unit to the UBL during turbulent 
conditions. According to Collier (2006), the UBL is created by airflow from rural 
to urban areas. The micro-scale initiates energy circulation—below roof levels—as 
a result of the heterogeneous urban morphology’s influence. These causes in energy 
transfer from several characteristics: urban street canyon flows, energy from indi-
vidual buildings mixing with adjacent building groups, and the atmosphere above 
the roof. The appearance of a turbulent-wake layer above the roof level can occur 
at approximately 2.5–3 times the height of the buildings (Roth 2000). This layer is 
often termed a “roughness sub-layer” while above the roughness sub-layer is the 
urban surface layer or the inertial sub-layer; it is the effect of a combination of 
a larger part of the urban area. The turbulent flux is constant with height (Collier 
2006). Meanwhile, the mixed urban layer height is set above the surface layer, with 
its characteristics are affected by the presence of urban surface heterogeneity, and it 
extends upwards to the top of the UBL during daylight periods. 

According to intrinsic urban properties and urban landscape, it has produced a 
diverse phenomenon, the so-called urban heat island (UHI). The UHI characteris-
tics are very different because of landscape differences. Although there are similar
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Fig. 16.1 Urban morphological scale. Source Oke (2002)

building heights, fewer trees, and less irrigated turf, Phoenix faces with UHI effect 
more than Kuwait city, with the urban heat island intensity of Phoenix (0.22 °C per 
decade) higher than Kuwait city (00.07–0.12 °C per decade) (Nasrallah et al. 1990). 
In terms of the spatial pattern, the UHI is controlled by the component of built-up 
areas and probably be separated by the influence of intra-urban land use in the city 
(Oke 1987). According to thermal properties, built-up areas, always pavement mate-
rials, play significant roles in determining the temperatures of near-surface air (Li 
2016). If the near-surface temperature was considered, the industrial-commercial 
and high-density residential areas presented the highest land surface temperature 
(Uritescu 2017). 

These result in the probable appearance of areas of cooling effects, such as parks, 
lakes, or open spaces, or areas of warming effects with consequences from various 
urban activities, such as high-rise buildings, shopping complexes, and industrial areas 
(Fig. 16.2) (Oke  1987).

According to three critical components of the landscape that influence urban 
climate: urban geometry, urban land use, and urban land cover; this chapter will focus 
on only land cover effects in terms of green space relationships. It was discovered 
that several intrinsic properties, including thermal admittance, moisture status, and 
surface albedo, play a significant role in producing urban climate. 

Surfaces materials with large thermal admittance play an important role in 
possessing greater absorbing and re-emitting thermal radiation properties. A high
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Fig. 16.2 Spatial heat island characteristics. Source Oke (1987)

proportion of high thermal admittance of surface materials is a key to maintaining 
warmer urban temperatures (Oke et al. 1991). It has been found to have a higher 
cooling rate in the surrounding wooded countryside than flat concrete in the city; 
as a result, it can be generated a heat island at approximately 8 °C (Oke 1981). 
While the moisture quality of the land cover is crucial, defined as the quantity of 
moisture accessible to the UCL’s ability to store water (Oke 1982). It is a signifi-
cant factor in the organization of mixed-surfaced micro-climates as surface moisture 
plays a crucial role in controlling turbulent heat transport in the UCL (Oke 1982). 
In wet areas, advection of warmer and drier air from surrounding impervious areas 
increases evaporation from irrigated lawns, gardens, and parks (Kanda 2007). This 
process contributes to mixed air in a micro-climate. In cities, the interaction of advec-
tion among impervious areas produces extra heat and makes sufficient moisture in 
parks or irrigated gardens. These factors can contribute to the formation of an oasis 
effect—the formation of a local micro-climate that is colder than the surrounding 
dry area as a result of evaporation or evapotranspiration of a water source or plants
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life and the higher albedo of plant life than bare ground (Oke 1982, 1987). The 
surface may contain sufficient water to allow evaporation to exceed the potential rate 
in the presence of less net radiation than latent heat in the appropriate settings. This 
condition results in cool islands in a region of dried urban air. The surface albedo is 
another crucial component that influences the daylight net radiation budget, which 
is the energy that enters, is reflected, absorbed, and expelled by the Earth system. 
For a given solar input, it is regulated the surface shortwave absorption by surface 
albedo, materials with high albedo will absorb less solar radiation than the low ones. 
In general, dark surfaces will contribute to low surface albedo while bright surfaces 
have a high surface albedo (Taha 1997). 

The studies of urban climate and green space relationship are found in remote 
sensing; for instance, Cao et. al. (2010) used ASTER and IKONOS satellite images 
to investigate the relationship between thermal temperature and cooling effect of 92 
public parks in Nagoya, Japan. He found that sizes and the proportion of hardscape 
and soft scape areas in the parks influence the cooling effect and temperature decrease; 
however, the result was not shown green space areas in terms of quality. This chapter, 
therefore, discovers urban climate and green space in both quantity and quality by 
applying remote sensing. 

One crucial component factor for urban planning is urban greening because of 
its various contribution to citizens’ well-being and quality of living by minimizing 
the effects of local severe weather conditions and air pollution (Abutaleb et al. 2021; 
Evans et al. 2013). Urban green spaces may include places with “natural surfaces” 
or “natural settings” but may also include specific types of urban greenery, such as 
street trees, and may also include “blue space,” which represents water elements 
ranging from ponds to coastal zones (World Health Organization 2013). Thermal 
characteristics (which enhance heat storage) and street canyon geometry (which 
minimizes longwave radiation loss) are equally capable of generating a heat island 
under conditions relevant to UHI development (Fernando 2013). 

Grilo (2020) demonstrated the effect of green and gray spaces in the cooling island 
effect, which showed that even green spaces with reduced areas could control micro-
climate, alleviating temperature by 1–3 °C and increasing humidity by 2–8%, on 
average. Green spaces with a higher tree density generated a more significant cooling 
impact. The shape, aspect, and degree of exposure to solar radiation of grey surfaces 
were also significant features considered in the models. Green spaces affected temper-
ature and relative humidity up to 60 m away from the parks’ boundaries, but gray 
areas had a much smaller effect, ranging from 5 to 10 m (Fig. 16.3).

Urban green space temperature can be 1–2 °C, and sometimes 5–7 °C, cooler 
than their urban environments, establishing a “park cool island” (PCI) mentioned 
on several field-based measurements (Aram et al. 2019; Gonçalves et al. 2018; 
Ersoy 2019). Furthermore, several proves, such as field measurements, scale models, 
thermal remote sensing, and computer simulation, mentioned the effectiveness of 
reducing the temperature by green infrastructure (Aram et al. 2019). Aram et al. 
(2019) reviewed the literature related to the cooling effect of green infrastructure 
in different shapes and scales, including small local parks, large urban parks, urban 
forests, urban gardens, green roofs, green facades, and street trees. However, different
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Fig. 16.3 Green spaces’ cooling effect. Source Grilo (2020)

urban forms have been created in cities, and each of these forms has different effects 
on the micro-climate of the city by changing the duration of direct sunlight and 
the mean radiant temperature. Typically, cooling extends depending on greenspace 
size, with larger greenspaces commonly providing more cooling. Vaz Monteiro et al. 
(2016) discovered the cooling effects and suggested that the greenspaces with areas 
of 3–5 ha, situated 100–150 m apart, could provide a spatially comprehensive mean 
cooling service of about 0.7 °C across a city with a similar climate/characteristics 
to London. Moreover, the results showed that very small greenspaces (with areas < 
0.5 ha) did not affect the air temperatures of their surrounding areas (Vaz Monteiro 
et al. 2016). 

Urban heat island (UHI) effect has been an issue in urban areas. Due to the UHI 
effect, an urban area can be 1.0–6.0 °C warmer than the neighboring non-urban areas, 
as shown in Fig. 16.4 (Aram et al. 2019). American cities face 0.5–4.0 °C higher 
daytime air temperatures and 1.0–2.5 °C higher night-time air temperatures than the 
neighboring rural areas (Wuebbles et al. 2017). Consequently, increasing urban green 
space can play a critical role in reducing the urban heat island effects and providing 
comfort to the neighboring area. Various studies confirmed that UHI, air temperature 
(AT), land surface temperature (LST), and the types of land cover/use are linked (e.g. 
Buo et al. 2021; Shahfahad et al. 2021; Rajkumar and Elangovan 2020; Shorabeh 
et al. 2020; Tawfeek et al. 2020; Amindin et al. 2021; Athukorala and Murayama 
2021) as well as its connection with ecosystem service value (Guha 2021; Lei and 
Wang 2019).
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Fig. 16.4 Urban heat islands. Source U.S. Environmental Protection Agency (2021) 

16.3 Remote Sensing for Quality of Green Space and Local 
Temperature 

Remote sensing is a tool to obtain information about the urban context, particu-
larly thermal field monitoring and land use/land cover (Busato et al. 2014; Silva and 
Torres 2021). It brings an excellent opportunity to identify the vegetation phenology 
in different resolutions. The proportion of greenness in urban vegetation can be 
assessed at the pixel level using a variety of spectral unmixing variations in order to 
derive area-based green space information. Remote sensing data enables the assess-
ment of various land use and occupation characteristics, which can be noticed via 
the spectral response of vegetation indices or land surface temperature. The land 
surface temperature (LST) and normalized difference vegetation index (NDVI) have 
been widely used to determine surface temperature and vegetation in many contexts, 
including urban temperature and urban green spaces at various spatial scales (e.g. 
Ekwe et al. 2021; Rahaman et al. 2021; Shafizadeh-Moghadam et al. 2020). 

16.3.1 Land Surface Temperature (LST) 

Some studies have emphasized studying small and medium cities’ built environments 
based on remotely acquired information. Thermal remote sensing describes the flaw 
observed in conventional monitoring of urban temperature, especially for detecting 
the urban heat island (Chen et al. 2006; Mirzaei, et al. 2020; Siddiqui et al. 2021;
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Sun 2021). The cooling effect of urban greenspace is commonly analyzed using 
temperature and land surface temperature (LST) data (Liao et al. 2021; Yang et al. 
2017). Because satellite-derived LST data are widely available on a regional–global 
scale, it is frequently used to estimate near-surface air temperature (Stisen et al. 
2007). However, the air temperature dataset is usually not widely available, and 
only a limited amount of measurement sites exist in a small area, especially in a 
city or town. The thermal infrared remote sensor (TIRS) is broadly utilized for LST 
deriving to its extensive spatial coverage (Nichol and Wong 2008). LST, which is 
sometimes referred to as the Earth’s skin temperature and is derived from remotely 
detected thermal infrared (TIR) data, is a critical metric for assessing and modeling 
the surface energy balance (Weng 2019). 

Current satellite TIR data are well-suited for studying cities’ thermal conditions 
and resolving urban environmental and health issues due to their significant geograph-
ical variability. The thermal infrared sensors on numerous satellites are listed in Table 
16.1. 

LST is an important component of climate and biology, impacting species and 
ecosystems on various sizes, from local to global. NASA and other international orga-
nizations have designated LST as one of the most critical Earth System Data Records 
because it measures thermal radiation emission from the land surface, where incident 
solar energy interacts with and heats the ground or the surface of tree canopies in 
vegetated areas (Hulley et al. 2019). 

In this study, the LST was computed using Landsat 8 OLI/TIRS Band 10 (thermal 
infrared region) using formulas from the USGS web page for calculating the top of 
atmospheric (TOA) spectral radiance (Lλ: W/m2 srad µm) for Landsat 8 OLI as 
follows: 

Lλ = ML ∗ Qcal + AL − Oi (16.1)

Table 16.1 Thermal infrared remote sensors 

Satellite Spectral resolution (µm) Spatial resolution (m) Revisit time (days) 

NOAA AVHRR 10.30–11.30 
11.30–12.50 

1100 1 

Landsat 4/5 TM 10.40–12.50 120 16 

Landsat 7/ETM+ 10.40–12.50 60 16 

Landsat 8/ETM+ 10.60–12.51 100 16 

Aster 10.40–12.50 90 16 

HCMM 10.50–12.50 600 1 

MODIS 3.66–4.08 
10.78–12.27 

1000 1 

Source Weng (2009) 
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where ML represents the band-specific multiplicative rescaling factor, Qcal is the 
Band 10 image, AL is the band-specific additive rescaling factor, and Oi is the 
correction for Band 10. 

After the digital numbers (DNs) are converted to the reflectance values, the TIRS 
band data should be converted from spectral radiance to brightness temperature (BT) 
by using the following equation: 

BT = K2 

ln
(

K1 
Lλ 

+ 1
) − 272.15 (16.2) 

where K1 and K2 stand for the band-specific thermal conversion constants from the 
metadata (for this study, K1 and K2 were 774.89 and 1321.08, respectively). The 
radiant temperature is converted to Celsius values by adding absolute zero (about 
273.15 °C) (Avdan and Jovanovska 2016). 

Numerous research has demonstrated the efficiency of a group of urban green 
spaces in reducing UHI and cooling the urban environment by utilizing the advantages 
of remote sensing in urban ecological studies. Numerous satellite imagery datasets, 
such as the LST map, QuickBird, IKONOS, and ASTER, are valid for analyzing the 
effect of green spaces on huge expanses (Aram et al. 2019). 

16.3.2 Normalized Difference Vegetation Index (NDVI) 

Earlier research has demonstrated that the cooling effect of the blue-green space 
depends on the size, shape, connectivity, and complexity (composition and configu-
ration) of the blue-green space and the greenness of the green vegetation measured 
by the Normalized Difference Vegetation Index (NDVI). NDVI is not only an indi-
cator of the greenness of the biomes but also an indicator of vegetation health based 
on how plants reflect specific ranges of the electromagnetic spectrum. Because the 
urban thermal environment is related to reducing evapotranspiration from the surface 
vegetation cover, NDVI is helpful to understand the relationship between surface 
vegetation cover and water availability (Lo et al. 1997). Over time, it has been used 
for vegetation change in environmental studies, agricultural monitoring, and exami-
nations of vegetation vitality changes. Rouse et al. (1974) was the first person who 
proposed the NDVI, which has been widely used to express the vegetation amount 
in urban areas using the ability of red and near infrared (NIR) wavelengths. 

Calculations of NDVI for a given pixel always result in a number that ranges from 
minus one (−1) to plus one (+1); however, no green leaves give a value close to zero. 
A zero means no vegetation, and close to +1 (0.8–0.9) indicates the highest possible 
density of green leaves. 

NDVI = 
ρNIR − ρR 
ρNIR + ρR 

(16.3)
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Table 16.2 NDVI range in each land cover type 

Land cover types NDVI range Land cover types NDVI range 

Water −0.28 to 0.015 Shrub and grassland 0.18–0.27 

Built-up 0.015–0.14 Sparse vegetation 0.27–0.36 

Barren land 0.14–0.18 Dense vegetation 0.36–0.74 

Source Akbar et al. (2019) 

where ρ is the surface reflectance values for the near infrared (NIR) and red (R) 
spectral bands. Akbar et al. (2019) reported the NDVI range for land cover classes 
using Landsat 8 OLI image from 2016, as shown in Table 16.2. 

16.4 Web-Based GIS for Cooling Potential Simulation 
of Urban Green Space 

A web map, or web-based geographic information system, is an interactive display 
of geographic data that can be used for various purposes, including data visualiza-
tion, presenting real-time geographical data, querying spatial data in online cata-
logs, and searching tools. JavaScript is one of the most popular built-in web-based 
GIS (Dorman 2020). Due to the increased popularity of web-based GIS, new appli-
cations for GIS techniques in participatory spatial planning and decision making 
have emerged (Jelokhani-Niaraki and Malczewski 2015). The concept of a multicri-
teria spatial decision support system (MC-SDSS) has been offered as a useful tool 
for participatory/collaborative decision making and consensus building in spatial 
planning or decision making. 

Figure 16.5 illustrates a web-based geographic information system concept. The 
operation of a web map consists of two important parts: server and client. The server 
serves various geospatial data services, while the client part allows the user to access 
the data via the web or application. The server and the client communicate via Hyper-
text Transfer Protocol (HTTP/HTTPS). The information communicated between 
the GIS server and the client is based on the Open Geospatial Consortium (OGC). 
Usually, servers have a different Uniform Resource Locator or URL. Users can 
find and access URLs on the Internet network. The function of a server is to listen 
to requests for information from users and send them back as requested through 
a communication channel based on HTTP/HTTPS protocol. The communication 
data formats are HTML and binary. image, Extensible Markup Language (XML), 
Geography Markup Language (GML), or JavaScript Object Notation (JSON).

A GIS server provides specialized software to transform geographic information 
such as shapefile, GeoPackage, GML, TIFF, KML, or data stored in a spatial database 
into the standard OGC web service format. The OGC standard specification defines 
some different methods for exchanging geospatial data, including Web Map Service
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Fig. 16.5 Concept of web-based GIS. Source Adapted from GeoServer (2013)

(WMS), Web Feature Service (WFS), and Web Map Tile Service (WMTS) (Wu et al. 
2011). 

• WMS is a standard for exchanging georeferenced maps derived from geospatial 
databases. The GIS server sends the image data to JPEG, and PNG, which can be 
displayed in a browser application. Additionally, the generated image data can be 
configured for transparency to overlay other layers produced by other servers. 

• WFS is a standard for exchanging geographic information on the Internet. The 
advantage of this service is that information is exchanged over a network instead 
of sharing geographic information at the file level. Some operators allow users to 
create, delete, edit and display detailed information. 

• WMTS is a standard protocol for serving georeferenced map tiles where they are 
precomputed. 

The distinction between WMS and WMTS is that WMTS transmits tiles (usually 
256 × 256 pixel size), whereas WMS gives a single image for each request. To access 
geographic information in a web-based GIS, a client employs the HTTP/HTTPS 
protocol. This protocol makes it simple to use and supports a high number of 
users simultaneously. Additionally, it is cross-platform, accessible via numerous 
web browsers like Internet Explorer, Firefox, and Chrome, each of which supports 
various operating systems, including Windows, Linux, Mac OS, and iOS. APIs that 
are available and support OGC standards, such as Open Layers, Leaflet, Mapbox GL, 
ArcGIS API, and others, provide another data source (Omidipoor et al. 2019). Key 
technologies and tools for web GIS development include spatial database, software 
clients, GIS server middleware, and frontend libraries and frameworks.
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The geographic database system is an essential component of web GIS develop-
ment since it deals with data collecting and provides tools for retrieving, managing, 
and analyzing spatial data. The majority of spatial databases are relational databases 
that are used in conjunction with GIS. These databases provide features or additions 
that allow them to support various forms of spatial data. The OGC specification covers 
the types and functions of a standard spatial database. Vector and raster datasets with 
geographic indexes and spatial functions for managing and evaluating the data are 
examples of spatial data formats that can be stored in a database. Various database 
applications such as PostgreSQL/PostGIS, MySQL, Oracle Database, and others are 
utilized for spatial data. 

In order to provide Internet network data, software clients or GIS Desktop are 
required to be installed on the end user’s computer. Popular GIS software such as 
QGIS and ArcGIS are widely used because of their wide variety of capabilities for 
creating, managing, analyzing, and visualizing geographic data. Nowadays, GIS soft-
ware is widely used. The majority of GIS programs support connection to geospatial 
datasets. Users can access data from the exact location, making it easier to upgrade 
and analyze. There are numerous benefits: Information is kept up-to-date and is less 
likely to be redundant. 

GIS software customers include a library utility, a command-line, or a scripting 
machine for managing and manipulating data. Popular library utilities include 
GDAL/OGR and ArcPy, supporting vector, and raster spatial data. Advantages of 
libraries utilities are customizable for the intended purpose. It is possible to auto-
mate re-executing through a series of developed commands. The term “middleware” 
refers to software installed on the GIS server’s side. Its purpose is to listen to user 
commands and respond with data. GeoServer, Mapserver, and ArcGIS are all stan-
dard software tools. GIS server middleware can connect to geospatial databases and 
process vector and raster spatial data. It enables users to produce, share, process, 
update, and publish geospatial data from various sources via an open web service 
standard. These OGC web services can be rendered with the help of frontend tools 
such as Leaflet, Mapbox, and OpenLayers. The OGC web services can be accessed 
using the GIS software desktop. 

Frontend libraries and frameworks allow developers to bring OGC web 
service data to create web-based GIS on user needs. Most frontend libraries and 
frameworks support JavaScript development, such as Leaflet, Mapbox, and Open-
Layers. However, some frontend libraries can use other programming languages, 
such as Folium, which uses Python to develop web maps. Frontend development is 
essential because it is the part that presents information to users and interacts with 
them. It may have a working basis: it can be displayed on various devices, determine 
the current location from the device (Location), and display other data layers such 
as administrative boundaries. For example, forest regions, elevations, streams, and 
transportation routes can be enhanced with survey data such as location, images, 
captions, and graphs. 

Currently, using online web maps to display data enables more rapid analysis 
of complex geographical events, the recognition of trends, and the planning and 
allocation of resources for policy and decision making (e.g. Evans and Sabel 2012;
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Duarte et al. 2021; Muenchow et al. 2019; Neene and Kabemba 2017; Farkas 2017; 
Olyazadeh et al. 2017). 

16.5 A Case Study: Panat Nikom Municipality, Chon Buri 
Province, Thailand 

16.5.1 Overview of Panat Nikom Municipality 

Panat Nikom Municipality is a small town in Chonburi province, Thailand, located in 
the southeast of Bangkok. Panat Nikom is located in the middle of the manufacturers 
and industries region. However, in August 2015, Panat Nikom Municipality was 
chosen not only to be a city to promote sustainable urban development of Thailand’s 
local cities by the National Economic and Social Development Board (NESDB) 
and the Japan International Cooperation Agency (JICA) but also to be a city of the 
Sustainable Future City (SFC) development concept and proposed the Sustainable 
Future City Initiative (SFCI). 

16.5.2 Data and Material 

Six Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensors (TIRS) 
from December 2019 to April 2020 were freely downloaded from the United 
States Geological Survey website (https://earthexplorer.usgs.gov) to use in the study 
together with GIS layers collection from several sources. Table 16.3 shows the study’s 
Landsat 8 OLI/TIRS band characteristics.

16.5.3 Methodology 

Geometric correction, radiometric correction, and resampling were applied to all 
images. The TIR bands were used to calculate LST (Band 10). As described in the 
previous section, LST and NDVI were estimated using Eqs. 16.1–16.3. Green areas 
were created by manually digitizing Worldview-3 satellite images using QGIS as 
polygons features due to its higher resolution (1.24 m × 1.24 m) than Landsat 8 
OLI (30 m × 30 m). According to several studies, pocket green spaces are defined 
as green spaces that are less than 2 ha in size and are located in urban and suburban 
regions (Wu et al. 2021). Green areas were defined in this study under Thailand’s 
Office of Natural Resources and Environmental Policy and Planning definition, which 
included public green areas, utility green areas, row street green areas, economical 
green areas, natural green areas, and undeveloped green areas. The selected green

https://www.earthexplorer.usgs.gov
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Table 16.3 Landsat 8 OLI and TIRS characteristics 

Band Wavelength (µm) Resolution (m) 

Band 1: Coastal aerosol 0.43–0.45 30 

Band 2: Blue 0.45–0.51 30 

Band 3: Green 0.53–0.59 30 

Band 4: Red 0.64–0.67 30 

Band 5: Near infrared (NIR) 0.85–0.88 30 

Band 6: SWIR 1 1.57–1.65 30 

Band 7: SWIR 2 2.11–2.29 30 

Band 8: Panchromatic 0.50–0.68 15 

Band 9: Cirrus 1.36–1.38 30 

Band 10: Thermal infrared 1 10.60–11.19 100 

Band 11: Thermal infrared 2 11.50–12.51 100 

Source NASA (2021)

area was done by selecting the area more than 1600 m2 (1 Rai—a Thai area unit), 
which can be identified in the WorldView-3 image and correspond with the Landsat 
Thermal image. Each shape of the green area polygon was utilized to calculate the 
mean value of LST and NDVI for the correlation study using zonal statistics. After 
that, the regression analysis was performed to create a simulation model. Then the 
model was used for developing the GIS web-based GUI for the mean temperature 
simulation. Figure 16.6 presents the research framework.

16.5.4 Results and Conclusion 

In developing a model to support green space management planning decision making, 
a correlation analysis was conducted between LST, NDVI, and green area. 

• LST and NDVI Calculation 

Indicators of vegetation cover are frequently utilized in environmental applications. 
Several of them are primarily used to estimate plant yield, which provides excellent 
supporting data for describing temperature features, as demonstrated in a study. 
Karnieli et al. (2010) found that NDVI can be used to study temperature differences 
between areas with and without vegetation cover. Areas with high NDVI values are 
found to have lower surface temperatures, and areas with low NDVI values have 
high surface temperatures. For this investigation, data in the red and near infrared 
wavelengths with a spatial resolution of 30 * 30 m were applied for a year throughout 
the winter season by selecting one typical sample from November to April in 2019, 
as shown in Fig. 16.7 and Table 16.4.
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Fig. 16.6 Processing framework

• The relationship between the size of the green area surface temperature and NDVI 

After calculating the LST and NDVI, the LST and NDVI values were extracted 
with the 109 green area sites and correlation statistics (Best 1977). The level of 
interpretation of the correlation coefficient is shown in Table 16.5.

The satellite images data were taken between December 2019 and April 2020. 
One hundred and nine of the green area sites were performed for the correlation and 
regression analysis. The correlation statistics are shown in Table 16.6 and Fig. 16.8, 
which can be seen that the size of the green area is negatively related to the mean LST 
and positively to the mean NDVI at a low level. For interpretation, if the green area is 
increased in size, the LST should dropdown. The correlations between mean LST and 
mean NDVI were significantly negative throughout the study period (dry season), 
indicating that increasing the city’s quality of green space (NDVI) may decrease local 
temperature (mean LST). The green area’s size was negatively correlated with the 
mean LST and positively correlated with the mean NDVI. If the green area increases, 
it may increase the mean NDVI.

• Linear regression analysis 

From the selected data and variables for model development to support green space 
management planning decisions for calculating mean LST in the previous step, the 
size of a green area (Rai) and mean NDVI were found to be the highest value of 
decision coefficient analysis results from linear regression analysis (R2) = 0.505 by
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LST 15 Nov 2019 NDVI 15 Nov 2019 LST 01 Dec 2019 NDVI 01 Dec 2019 

LST 02 Jan 2020 NDVI 02 Jan 2020 LST 03 Feb 2020 NDVI 03 Feb 2020 

LST 06 Mar 2020 NDVI 06 Mar 2020 LST 07 Apr 2020 NDVI 07 Apr 2020 

Fig. 16.7 List of LST and NDVI between November 2019 and April 2020

the model significant at p-value < 0.01, and it can be written in the form of equations 
as follows (Eq. 16.4): 

MEAN_ LST = (
Green area ∗ (−9.575 × 10−6

))

− (MEAN_NDVI ∗ 3.507) + 28.148 (16.4) 

where

MEAN_LST is the average land surface temperature (°C).
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Table 16.4 LST and NDVI statistics varies in each month 

Date LST (°C) NDVI 

Min Max Mean Min Max Mean 

15 Nov 2019 24.31 28.58 26.82 −0.30 0.69 0.21 

01 Dec 2019 24.03 28.66 27.09 −0.32 0.65 0.18 

02 Jan 2020 25.60 31.29 29.13 −0.27 0.59 0.12 

03 Feb 2020 23.95 29.57 27.31 −0.20 0.30 0.01 

06 Mar 2020 22.27 27.16 25.67 −0.44 0.18 −0.09 

07 Apr 2020 25.02 29.91 28.28 −0.19 0.45 0.13

Table 16.5 Correlation coefficient interpretation 

Coefficient (r) Relationship 

0.00–0.20 Negligible 

0.20–0.40 Low 

0.40–0.60 Moderate 

0.60–0.80 Substantial 

0.80–1.00 High to very high 

Source Best  and Khan (1977)

Table 16.6 Correlation coefficients of green area, mean LST, and mean NDVI 

Correlation coefficients MEAN_LST MEAN_NDVI Green area 

MEAN_LST 1 −0.700** −0.347** 

MEAN_NDVI −0.700** 1 0.332** 

Green area −0.347** 0.332** 1 

** Correlation is significant at the 0.01 level (2-tailed). * N = 109

Green area is the size of the green area (Rai).
MEAN_NDVI (NDVI value range between −1 and 1). 

• Development of a web-based GIS for green area management decision support 
system. 

The web-based GIS for the green area management decision support system 
(Fig. 16.9) was created utilizing a website schema and Geoserver, Node.js, and 
PostgreSQL/PostGIS. The user can digitize by adding a new polygon of green area, 
and the system follows the equation mentioned above. The graphic user interface 
was developed to be as simple as possible for local policymakers to assist them in 
designing to improve green space in their area. The system will then compute and 
report the new lowering temperature caused by the new green area that the user has 
added. Figure 16.8 describes a qualitative green space planning decision support
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Fig. 16.8 Relationship between mean LST and mean NDVI

model in the form of a web-based GIS that can be accessed by a web browser such 
as Chrome, Internet Explorer, Firefox, or Safari. The mean LST simulation function 
will begin by digitizing the area of new green and calculating the mean NDVI at the 
new green area’s boundary. Then both variables will be entered into Eq. 16.4, and 
the user will see a new mean LST value on the screen.

Overall, remote sensing methods can be applied for mapping and quantifying the 
cooling effects using satellite imagery. To get more precise and accurate evaluation, 
further study may attempt to explore the different techniques and sensors for getting 
a better relationship between the size of green space, quality of the green space, and 
land surface temperature. 

16.6 Conclusion 

This chapter demonstrates the integration of remote sensing and web-based GIS 
to describe the influence on the cooling effect of urban green space in Panat 
Nikom Municipality, Chon Buri Province, Thailand. It was found that the corre-
lation between mean LST, mean NDVI, and the size of the green area was in the 
trend. There was a strong negative correlation between mean LST and mean NDVI. 
At the same time, the size of the green area was slightly negatively correlated to the 
mean LST and slightly positively correlated to the mean NDVI. The quality of green 
space (NDVI) can reduce the local temperature (LST) better than the size of green 
space.



344 C. Suwanprasit et al.

Fig. 16.9 Example of a green area management planning decision support model interface

Nonetheless, the result of this study can be a guideline for further study from a 
green urban planning perspective as well as the web-based GIS can be utilized as a 
green area management decision support system for local management in the future. 
The cooling effect to cool urban areas can be an incentive measure for policymakers 
to recognize the importance of green spaces in the city, and hopefully, they will make 
a decision with the integration of green space effects for urban development. 
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Chapter 17 
Geo-spatial Modeling of Coastal Flood 
Exposures Due to Local Sea-Level Rise 
and Landscape Dynamics: A Case 
of Sagar Island 

S. Vinay and H. A. Bharath 

Abstract Coastal inundations are frequent natural events that are caused due to 
increase in tidal amplitudes triggered by the cyclone, storm surge, extreme rainfall, 
thermal expansion of oceanic waters, tectonic movements, and many other factors. 
Despite flooding being an essential part of the natural system, these natural events 
have been considered disastrous since they have a negative effect on human activities. 
Land use change and emissions due to anthropogenic activities have led to an increase 
in climatic extremes. Globally, accelerating temperatures have led to an increase in 
the intensity and frequency of cyclonic events and localized flooding. Inundation 
of coastal areas would damage agriculture yield, assets, socio-economic livelihood, 
natural habitats, and ecosystems. The goal of the current research is to determine the 
flood exposure in Sagar Island caused by storm surges, severe rainfall events, and 
rising sea levels. The goal was achieved by spatially overlaying two objectives, viz. (i) 
Land use dynamics modeling for identifying assets, houses and (ii) Flood inundation 
modeling. Agent-based land use change model has been used to visualize the likely 
change pattern for the year 2050. Zero connectivity bathtub model was used to 
spatially determine flood inundation exposure of the Island. Zero connectivity bathtub 
model assumes that all cells with elevations lesser than the threshold are subjected 
to flooding. Threshold in the current study was determined based on variable sea-
level rise due to cyclonic storms, severe rainfall events, and topographic conditions. 
Population and landscapes elements that are likely to be exposed for the current 
and future time periods are derived based on statistical data acquired from Census of 
India, land use patterns, and inundation levels. The results illustrate in Sagar, the tidal 
height rise varies with the type of storms and quantum of local precipitation. Land use 
assessment indicates loss of native vegetation, increase in human-centric activities, 
such as housing and agriculture, resulting in increased exposure to inundation. A tide 
of 2 m amplitude beyond the high tide which frequently expose 32 km2 of cultivable
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landscapes (Agriculture and Horticulture), 5193 houses for the current time (2020), 
and by 2050 about 31 km2 of cultivable landscapes and 10,870 houses get exposed. 
With tides reaching 6 m threshold, 41,632 houses and 122,712 houses are likely to 
be exposed in 2020 and by 2050, respectively. The current approach and findings 
of this study pave the way for the governing authorities and planners to prioritize 
mitigative measures, strategies that are region specific to reduce the impact, and risks 
of coastal flood inundation due to natural hazards. 

Keywords Inundation · Exposure · Land use dynamics · Flooding · Cellular 
automata 

17.1 Introduction 

17.1.1 Natural Hazards 

Earth’s natural constructive and destructive forces such as volcanic eruptions, winds, 
erosion, precipitation, sedimentation, tectonic movements, glaciers, wave action, 
earthquake, forest fire, floods, and natural cycles (carbon, water, nutrient, etc.) have 
been an integral part of life, shaping earth since time immemorial (Agrawal 2018). 
These natural forces have paved way for the evolution of (i) life forms (diversity of 
flora and fauna), (ii) biotic and abiotic components (landforms, geology topography), 
(iii) climatic condition (micro to macro), etc. Being essential to shaping various 
bio-geo-physio-chemical aspect on earth, the anomalies of natural forces can be 
threatening on the regional and global environs causing hazards. 

Natural hazards (Fig. 17.1) are defined as the result of bio-geo-physical, hydro 
meteorological natural events that are neither predictable nor containable, whose 
onset are either rapid or slow and have an impact on the environment, society (life and 
livelihood), asset, economy etc. (Bobrowsky 2013; Gill and Malamud 2017; Guo et al. 
2008; IFRC  2020; Nelson  2018; Shi 2019). Natural disasters are the result of hazards 
overwhelming vulnerable community, often resulting in mortality and morbidity 
(Prasad and Francescutti 2017). The aftereffect of the extreme events results in loss 
of connectivity, damaged infrastructure, disruption of the supply chain, damage to 
power sources, disordered and chaotic environs (political, economic, social), increase 
in poverty levels, and societal inequalities (Xu et al. 2016).

In the last century, there were about 15,000 natural hazards recorded across the 
planet and the frequency of hazards are found to be increasing at a rate of 2–3 disasters 
every year (EM-DAT 2020) (Fig. 17.2). Meteorologic and hydrologic (hydrographic 
and oceanographic) hazards have contributed to 71% (10,995) of the natural hazards, 
affecting 5000 billion people, claiming over 8.5 billion lives, and damages worth 2.4 
trillion US$, i.e., 68% of the total damages (EM-DAT 2020). In low income and 
developing countries, people are 8–12 times more vulnerable to natural hazards, 
suffer severe economic consequences, higher mortalities, and epidemics (Brown 
et al. 2018).
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Fig. 17.1 Natural forces and hazard classification

Fig. 17.2 Natural hazards and occurrences
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The anthropogenic activities across the globe are creating pressures on environ-
ment, and these activities can catalyze, trigger, or induce natural hazards (Gill and 
Malamud 2014). The dawn of industrialization has enhanced global temperatures to 
1.0 °C (IPCC 2012; Masson Delmotte et al. 2018). The increasing global tempera-
tures have triggered changes in regional climate, enhancing natural disasters caused 
by climatic systems. According to the World Disasters Report 2020 (IFRC 2020), in 
the last decade, about 83% of the natural disasters were triggered by extreme climatic 
and weather conditions such as cyclonic storms, floods, heatwaves, and droughts. In 
addition, the rising global temperatures are melting the polar icecaps, causing thermal 
expansion of oceanic water, leading to rising sea levels (3.3 mm/year) (Church 2013; 
Rahmstorf 2010). The accelerating sea-level rise, increasing cyclonic intensity, and 
frequencies are significant contributors to temporary or permanent coastal inunda-
tion (CDC 2017), posing a significant threat increasing exposure levels defined by 
the extent of the societal elements, viz. human, assets, infrastructure, located within 
the flooded area. 

17.1.2 Coastal Inundation 

Coastal landscapes are one among the most productive and invaluable habitats in 
the biosphere (Walker et al. 2005). Nutrient-rich fertile soils, highly productive 
ecosystems (aquatic and coastal), diverse landscapes, and navigation ease (Haque 
and Nicholls 2018) favor human habitations, trading, and industries. Coastal areas 
favor population concentration and have led to the development of numerous settle-
ments at various scales (village, towns to megacity). Globally, there are 2129 Coastal 
Cities and Agglomerations (CCA) (1505 small cities, 318 medium cities, 269 large 
cities, 22 very large cities, and 15 megacities) supporting over 53% of the global 
populace (Barragán and Andrés 2015). The increasing population density and CCA 
are vulnerable to increasing natural disasters. It is predicted by 2070, the population 
affected by SLR would increase by three folds and by 2050, assets exposed to coastal 
flooding would increase by two folds (Bukvic et al. 2020). 

Coastal inundation of low-lying coastal areas is a natural phenomenon caused by 
increasing/high oceanic water levels because of one or a combination of the following 
(Muis et al. 2016; NASA  2020; Sudha Rani et al. 2015; Wang et al. 2020):

1. Storm surge–abnormal rise in seawater level caused by low-pressure 
systems/tropical cyclones/winds combined with high tides driving the oceanic 
water beyond the shorelines. One of the main causal factors for coastal flooding 

2. Sea-level rise (SLR) resulted from melting polar ice caps and thermal expansion 
of oceanic/sea waters, and the current rate of SLR is 3.3 mm/year 

3. Astronomical tides–due to the gravitational pull by the moon and sun, waves 
tend to reach higher amplitudes
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Fig. 17.3 Inundation and tidal variations 

4. Tsunami–the tectonic plate movements/earthquakes below the ocean bed triggers 
displacement of the waterbody. The waves formed due to this would be very high 
(beyond 30 ft) with large wavelengths. 

Figure 17.3 depicts the zone of inundation concerning various tidal conditions 
for a given location. Tsunamis are the ones with the highest magnitude (over 10 m), 
and globally there were over 30 tsunamis recorded post-1980 (ITIC 2021). Storm 
surges which are relatively smaller than tsunamis with amplitudes ranging up to 9 m, 
globally in the last century, more than 700 surges have been recorded (SURGEDAT 
2021). Even though the inundations caused by surges or tsunamis are occasional 
and temporary, they are disastrous, causing sever damages, mortalities, etc. It takes a 
longer time for the local administrations and habitants to recover from the immediate 
and aftereffects. On the contrary, sea-level rise is not instantaneous, but inundations 
would be permanent, gulping the shorelines and coastal habitations. Cumulatively 
sea-level rise, astronomical tides, and storm surge can increase the tidal amplitudes 
causing extremely skewed surges (Haigh 2016) a.k.a king tides (Wright et al. 2019), 
subsiding coastal area and deltas (Ward et al. 2011), causing severe stresses to the 
coastal landscapes, society, and environment. 

Globally, numerous inundation models have been developed to understand their 
influence on land use change, economy, society, and environment. In the recent past 
with the advent of spatial technologies, GIS and remote sensing are being used 
with hydrological and mathematical models to map coastal inundations, hazards, 
vulnerability, and risk at regional (local) to global scales (Batista 2018; Pattanayak 
et al. 2016; Rahman 2019). The attempt to use spatial or non-spatial models predicts 
the extent of inundation and depths by combining drivers, viz. weather, tide, flood 
defense, surge height, topography, bathymetry, surface material, land use, etc. (Ward 
et al. 2011). 

Flood inundation can be modeled as planar models or hydrodynamic models 
(Ward et al. 2011). Planar models in general uses tidal amplitudes and distribute 
over terrain based on connectivity algorithms (Example: bathtub models, enhanced 
bathtub models, zero connectivity, four-way hydrological connectivity, and 8-way 
hydrological connectivity) (Williams and Lück-Vogel 2020; Yunus et al. 2016). 
Hydrodynamic models connect numerous parameters such as bathymetry, surface
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material, wind speeds, and wind direction to describe the fluidic motion to simu-
late surge height and inundation (Example: NOAA SLOSH, ECMWF, LISFLOOD) 
(Wing et al. 2019). 

Since hydrological models are data and computationally intensive, the current 
article, the zero connectivity planar GIS inundation model is used to understand 
inundation based on various tidal depths above the high tide line. This allows planners 
to understand the zone and level of influence where the landscapes are inundated, 
and society would be at in distress, thus aiding to address the local issues and reduce 
the influence of these hazards. 

17.1.3 Land Use Dynamics 

Land use defines the region’s hydrological characteristics, based on the meteoro-
logical, geological, and topographical conditions. Landscape degradation, anthro-
pogenic pressures, and climate change effects would be increasing sea-level rise, 
intensity, and frequency of storms, these would further enhance tidal actions, erosion 
patterns, sedimentations, flood risks, and changes in habitat type and distribution. The 
increasing sea levels and changes in land use reduce the drainage gradient, promoting 
coastal floods due to surge tides and severe precipitation events (Pramanik 2017). 

Coastal inundations will have negative impact on society land assets, agriculture 
produce, housing, estuaries, and livelihood of the habitants in the region (Wang 
et al. 2020; Ward et al.  2011; Jones and Ahmed 2000), likewise with regards to 
environment, coastal flooding and sea-level rise reduce connectivity there by isolating 
habitats fragmenting species and ecosystems (Leonard et al. 2017). Further alteration 
in coastline features, landforms, coast erosion, and inundation would make the low-
lying coastal areas more vulnerable in the next century, further climate change would 
enhance this process (Hadley 2009). 

Advent in geospatial technologies along with very high-resolution remote sensing 
data (SAR, VIR) enables one to (i) quantify land use changes, (ii) identify extent of 
inundation, (iii) derive topography, and (iv) analyze the risk due to floods. Studies 
have been carried out globally to model and identify land use changes, shoreline 
line changes, using physical, mathematical, predictive models, agent-based models, 
regression models, rule-based models, etc. (Bharath et al. 2018; Dwarakish 2009; 
Kankara et al. 2015; Kermani et al. 2016; Ramachandra et al. 2021). 

The technology aids understanding the mechanics of flooding, predicting extents, 
and potential damages which is an important issue in coastal management. Modeling 
and simulating land use changes help understand the influence of decisions, inter-
ventions, and policies. Besides identification of future inundation due to cumulative 
impact of sea-level rise and surge, the predicted maps act as a key to prevent and 
reduce losses, provide reliable information about flood risk, enabling better rescue 
and relief operations, coastal planning, and climate change adaptation.
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17.1.4 Global and India Scenario 

Long-term observation of the natural hazards at global scale (Table 17.1) indicates, 
in the last 120 years (1901–2020), there were more than 15,000 events globally, 
and in India, per se there were more than 700 natural hazards containing 28% of 
the global moralities. Of all the hazards, storms and floods are the most frequent. 
Globally, there were about 4349 storms and 5287 flood events accounting 43% of the 
total natural disasters causing 67% of the physical damages (2.3 trillion USD) and 
26% global mortalities (8.3 million). In Indian scenario, 69% of the natural disasters 
are due to floods (307) and storms (202), causing 90% of the physical damage (112 
billion US$). Coastal and inland floods contribute to 58% of the total damages and 
storms, causing 32% of the damages. 

Increasing global temperatures (Berkeley Earth 2020) have triggered changes in 
regional climate, enhancing natural disasters (Fig. 17.2). According to the World 
Disasters Report 2020 (Guo et al. 2008), in the last decade, about 83% of the natural 
disasters were triggered by extreme climatic and weather conditions such as cyclonic 
storms, floods, heatwaves, droughts, among many. Global mean sea level (MSL) is 
rising at a rate of 3.3 mm per year (NASA 2020), with a decadal temperature rise 
(Berkeley Earth 2020) of 0.12 °C, i.e., 4.6 in./1 °C (Fig. 17.4). The accelerated rising 
sea levels would increase the frequency, intensity, and duration of coastal flooding 
(CDC 2017), posing a significant threat to the coastal areas and communities (Nauels 
et al. 2019).

India has been traditionally affected by natural disasters (Anandha Kumar et al. 
2011), 75% of the coastline is prone to storm, and 40 million hectares in India are 
prone to flooding. National Disaster Management Authority (2020) emphasizes that 
“The rising temperatures amplify the disaster frequency and intensities.” The cost

Table 17.1 Natural disasters 1901–2020 (EM-DAT 2020) 

Disasters Global India 

No. events Damage 
million US$ 

Morality 
1000s 

No. events Damage 
million US$ 

Morality 
1000s 

Drought 747 174,905 11,731 16 6541 4250 

Earthquake 1515 829,871 2340 26 5342 72 

Epidemic 1493 9615 70 4544 

Extreme 
temperature 

597 63,266 186 60 544 18 

Flood 5287 839,295 6991 307 73,234 75 

Landslide 761 10,879 67 51 55 5 

Mass 
movement 

48 209 5 2 0 

Storm 4349 1,524,732 1399 202 39,536 167 

Wildfire 452 107,927 4 4 2 0 
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Fig. 17.4 Sea-level rise and temperature–trends and relationships

of damage prior 1996 was 18.05 billion Rs./Year that has increased to 47.45 billion 
Rs./Year post-1996. 

India’s coastline is exposed to 18% of the global tropical cyclones (Pattanayak 
et al. 2016). In the last century, over 265 cyclones on the east coast (95 being severe) 
and over 35 on the west coast (22 being severe) indicating the east coast is at least four 
times vulnerable than the west coast. Waves amplitudes during the extreme cyclonic 
events reach over 10 m (Kumar et al. 2000) inundating coastal areas, coastal islands. 
Ministry of Earth Sciences, Government of India, confirms increasing cyclones’ 
events and rising sea levels (Krishnan et al. 2020). The sea-level rise rate has doubled 
in the last two decades from 1.75 mm/year to 3.3 m/year. 

All these factors make it essential to develop a scenario-based model to understand 
coastal flooding and its effects on society and the local environment.
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17.1.5 Objectives 

It is evident that coastal India is a cyclogenesis area and is frequently exposed to 
coastal flooding. The goal of the current research is to model and simulate the flood 
exposure in Sagar Ganga Island, one of the largest habited islands in Sundarbans. 
The following objectives aid in achieving the said goal: 

1. Land use pattern visualization and simulation 
2. Simulating flood inundations based on varied tidal heights. 

17.2 Data and Method 

17.2.1 Data–Global and Regional Datasets 

Data for flood hazard assessment were collated from various government records, 
portals, open databases, NRSC, PSMSL, Census of India, Survey of India, virtual 
earth database, and other global datasets. Table 17.2 describes the data used in the 
analysis.

17.2.2 Study Region and Its History with Disasters 

Sagar is a coastal island located in the south of West Bengal state. The island has 
an area of 238.9 km2 with 47 Mouzas (villages) (Fig. 17.5). The island has evolved 
from being a part of the Sundarbans mangrove forest prior to 1800 to a habited 
area supporting over 0.2 million people practicing agriculture, fisheries, trade, and 
commerce. Being located in the Bay of Bengal, the hot spot of natural disasters 
the Island is frequently under threat from natural disasters such as super cyclones, 
cyclones, heavy rains, and rising sea levels (Dilley et al. 2005; SEDAC 2006). This has 
been causing inundations, damaging physical property, causing mortalities (human 
and livestock), and disrupting the region’s socio-economic activities.

In the last few decades, rising global temperatures and sea levels have inundated 
three villages, due to which people migrate to the main Island for their living. Earlier 
studies in the island have highlighted that the people in the island are vulnerable due 
to changing climate, sea-level rise, coastal erosion, and shoreline change (Gopinath 
2010; Mondal et al. 2017; Mukherjee et al. 2019). The disaster management report 
of India 2011 (Anandha Kumar et al. 2011; Misra et al. 2011) and the Vulnerability 
Atlas of India (BMTPC 2019) emphasis the Island and its habitants are frequently 
exposed to water inundation due to natural hazards (Fig. 17.5). Some facts about 
Island and the delta are:
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Table 17.2 Data used in the analysis 

Data Period Output Source 

Resourcesat 1, 2 
(5.8 m) 

2012, 2020 Land use map National Remote Sensing 
Centre (2020) 

Cartosat 1 (2.5 m) 
stereo 

2010 Topographic map, slope, 
exposure to wave action, 
and SLR 

Sea level data 1950–2015 Variation in sea  level long  
term and short term 

PSMSL (2020) 

Cyclone data 1980–2020 Type of cyclonic event and 
paths 

Indian Meterological 
Department (2020) 

Tide data 1980–2019 Variation in tidal heights 
due to storm surges, heavy 
rains, and any events 

Indian Meterological 
Department (2020) 

Climate data (rainfall) 1901–2020 Rainfall anomalies in 
relation with tidal 
amplitudes 

NASA (2020), Indian 
Meterological Department 
(2020) 

Primary census 2011 Village-wise population Census (2011) 

Village administrative 
data 

Village boundary (Spatial) Mouza Information (2019) 

Ancillary map 1922 Topographic map, high and 
low water levels 

Ryder (1924) 

Google earth 2012, 2020 Training data for satellite 
image classifications, 
preprocessing of data, and 
extraction of buildings 
(2012 and 2020) 

Google (2020)

Fig. 17.5 Sagar island and natural hazards
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1. Encountered more than 105 cyclonic storms with approximately 35 severe 
cyclonic events, with maximum sustained winds over 90 knots between 1891and 
2020, 

2. Seismically falls under high damage risk zone, 
3. Has encountered 16 thunderstorms between 1981 and 2010, 
4. Liable for floods with surge heights reaching beyond 12 m. 

The presence of mangroves in the estuaries and deltas protects the Sundarbans 
from wave actions, storm surges, and erosion (Spalding et al. 2014). The rising sea 
levels in Sundarbans have been a threat to the deltas, inundating the low-lying coastal 
areas, and becoming a threat to mangroves and organisms. It is estimated by 2100, the 
rising sea levels and erosion would engulf about 10% of the deltas, mangrove areas 
in the Sundarbans (Rahman 2019; Payo 2016), affecting the livelihood of people and 
loss of habitat to the fauna. The disaster management report of West Bengal (Hazard 
assessment and disaster mitigation for West Bengal due to Tropical Cyclones, 2006) 
emphasizes these lines, i.e., Sagar Island lost about 4.8% (12.16 km2) of area between 
1969 and 2001 due to coastal erosion and flooding. 

Table 17.3 depicts the history of severe flooding events in Sagar Island. In the last 
2 decades, severe cyclonic events and cyclonic events are increasing in the island, 
leading to higher inundation conditions and hampering society’s livelihood. In the 
last few decades, Amphan was one of the deadliest super cyclones with winds over 
170 kmph causing surges of 5–6 m, and rainfall of 150 mm was observed. 

Table 17.3 Chronology of floods in Sagar Island (Indian Meterological Department 2020; 
Bandyopadhyay 1994; Biswas  2010; Khan and Chatterjee 2018; O’Malley 1914) 

Date Name/descriptor Cause for flood Storm surge height (m) 

1684, 1688 Cyclone 

1833 Great Gale Cyclone, storm surge 3 

1839 Torrential rain 

1864 Severe cyclone Cyclone, storm surge 3.4 

1867 Cyclone, storm surge 2 

1900 Heavy rainfall for 4 days Rainfall 

1904, 1907 Heavy rainfall Rainfall 

1942 Public hearing Cyclone storm 2–5 

1974 Cyclone wind 

1976 Severe cyclone Cyclone wind 3 

2002 BOB 03 Cyclone 

2009 Cyclone Aila Cyclone 4–5 

2019 Severe cyclone Bulbul Cyclone 3–4 

2020 Super cyclone/very severe 
cyclone Amphan 

Cyclone 5–6
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17.2.3 Land Use Analysis and Modeling Using Agent-Based 
Models 

17.2.3.1 Land Use Mapping 

Land use planning of a region is considered a key driver in reducing the risk due to 
natural hazards. Land use assessment was carried out based on standard protocols 
using Gaussian Maximum Likelihood Classifier (GMLC) (Ramachandra et al. 2016). 
The process of land use classification process involves collation of satellite data, 
data preprocessing, image classification, and accuracy assessment (Fig. 17.6). For 
the current study, satellite data were acquired from IRS LISS IV FMX sensor for the 
year 2012 and 2020. These data are of 10-bit, 5.8 m resolution having 3 spectral bands 
(Green 0.52–0.59 µm, Red 0.65–0.68 µm, and IR 0.77–0.86 µm). Using virtual earth 
database (Google 2020), these satellite images were geometrically rectified based 
on ground control points such as road junctions and permanent structures. Training 
sites were delineated on virtual earth data as well as on the composite satellite image, 
covering over 15% of the Sagar Island. About 60% of the training sites were used for 
land use classification, while 40% were used for accuracy assessment. GMLC was 
used to classify the satellite data into six broad land use categories, viz. agriculture, 
water, horticulture, forest, urban, and others. Kappa statistics and error matrix were 
used to determine the accuracy of the land use classification. If the accuracy was less 
than 80%, additional training sites were used to classify the data.

17.2.3.2 Land Use Change Modeling 

Agent-based modeling (ABM) has proved to be an individual and reliable decision-
making tool to capture spatial dynamics integrating socio-economic, infrastructure, 
physical, and environmental factors. In the current research, cellular automata (CA)-
based ABM was used to predict the likely land use dynamic for the year 2050. 

ABM technique combines the foresaid factors through various concepts pertaining 
to Boolean algebra, fuzzy logic, analytical hierarchical process (AHP), multicriteria 
evaluation (MCE), cellular automata (CA), and Markov chains to simulate and predict 
the likely land use changes in near future (Ramachandra et al. 2021, 2019; Bharath 
et al. 2014). 

These factors are categorized as (i) constraints—that restrict the changes in land-
scapes and (ii) growth factors—those which fuel the changes in landscape. The 
factors and their behaviors are different for different land use types. Example (i) 
along the shorelines, the water bodies tend to increase with rising sea levels, inun-
dating the low-lying areas, (ii) mangrove area that is under the protection from the 
state forest departments would refrain themselves from changing to other land use 
classes, (iii) agriculture or horticulture landscapes tend to change to built-up spaces 
with amenities, policies, etc.
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Fig. 17.6 Coastal hazard and exposure assessment

In the current study (i) Natural forests and water bodies were considered a 
constraint for all landscape. Boolean algebra was used indicating 0 for area under no 
change 1 for areas where likely land use changes could occur, (ii) factors fueling 
change was motorable corridors (main roads and metal roads), schools (acts as 
refugee in case of cyclone or similar hazards), amenities, and services (transport: 
bus stops; docks; banks; hospitals; police station). 

The distance up to which the amenities (or policies) would alter the landscape 
patterns depends on the regional dynamics. For example, built-up spaces closer the 
proximity to these services, higher the chances of the non-built-up spaces becoming 
built-up. With increasing population, amenities, and services, the chances land use 
conversions become higher. Likewise for cultivated spaces (agriculture and horticul-
ture), agriculture landscapes have higher tendency to change to horticulture particu-
larly along the drainage channels, where water is comparatively abundant. The effect
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of various factors is different in scale and range, due to this, normalizing the data to 
a common scale and range is necessary based on numerical functions, in the current 
study, fuzzy logic was used to normalize the data. 

Further, these normalized factors were compared against each other, i.e., pair wise 
to evaluate the importance of one factor over the other using analytical hierarchical 
process (AHP). Since the comparisons would sometimes be inconsistent, consistency 
ratio (CR) is mathematically evaluated as a function of consistency index (CI) and 
random index (RI). If CR is less than 0.10, the weights obtained are used to develop 
site suitability maps using multicriteria evaluation and constraints maps developed 
based on Boolean algebra. Site suitability is generated for each of the land use class. 
Markov chains are used for statistically predicting likely land use changes from 
current state to future state based on historical changes, CA model integrates the site 
suitability’s, probability of land use changes to define the state of each pixel. 

Simulations were carried out to calibrate the ABM, changes between 2012 and 
2020 were used to simulate 2020. If the simulated outcomes were comparable with 
actual land use 2020, the calibrated model was used to predict land use for the year 
2050. 

17.2.4 Coastal Hazard Exposure Assessment Framework 

Tidal amplitudes vary with the factors that affect locally, inundating earth surface 
features. The local sea-level variations are influenced by the following (Lorie 2020): 

1. Gravitational pull, rotational effect 
2. Deformational effects—redistribution of mass between land, ice, and water 
3. Steric effect—changes in heat and salinity distribution 
4. Dynamic sea levels—winds, ocean currents, and cyclones 
5. Non-climatic—glacial isostatic adjustment, tectonic movements, and sediment 

compaction. 

With changing climate, the rising sea levels and changing land use would further 
add up to the areas being exposed to hazard. This has necessitated understanding 
tidal amplitudes, frequency of occurrences and their effects, i.e., inundation levels, 
area under various landscapes inundated, population exposed to flooding. 

In the current study, zero connectivity planar bathtub model to derive zones prone 
to flood hazard based on various scenarios under variable tidal conditions. Zero 
connectivity model was used to derive the hazard zones with a hypothesis that the 
cyclone creates surges and a reason for heavy downpour that would inundate the 
unconnected landscape. Zero connectivity model assumes all the raster pixel that 
are equal to below the foresaid topographic depth gets inundated, in the presence or 
absence of local connectivity (Fig. 17.6). The scenarios were developed based on 
tidal height that is dependent upon various characteristics, viz. precipitation, cyclone, 
surge, etc. Figure 17.6 depicts the coastal hazard exposure assessment framework.
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Long-term daily precipitation data collated from IMD were analyzed for anoma-
lies and related to cyclonic precipitation events. This would indite the occurrences of 
likely rainfall events that would inundate unconnected and connected areas. Further, 
the surge heights during cyclones were related to the rainfall events. This interlinking 
would enable one to model inundation heights. These heights and the surface topog-
raphy derived from very high-resolution stereo satellite data were used to develop 
inundation maps. Based on the precipitation and tidal surge variability, various 
scenarios were developed. Inundation data were overlaid on the land use for current 
and predicted land use 2050 to understand area inundated, assets exposed to flooding. 

17.2.5 Relative Exposure Levels of Assets and Households 
to Coastal Floods 

For every scenario, water head causing inundation varied relatively to the intensity 
of event. The area under inundation varies relatively to the height of flooding in 
the coastal areas. Based on various inundation head, the assets exposed and houses 
that could be affected were estimated using spatial overlay. Accordingly, the area of 
household and population per unit area of building was considered to estimate the 
population vulnerable for 2020, 2050 considering water heads. 

17.3 Results and Discussions 

17.3.1 Land Use Analysis 

Sagar Island has witnessed large-scale erosion due to the rising sea levels in the last 
century, in addition, increasing anthropogenic pressures have led to reduction in the 
mangrove and native cover that has led to increase in flood vulnerability. Figure 17.7 
depicts the changes in land use and shorelines in the last century.

Figure 17.7a depicts the changes in land use in the last 8 years, i.e., between 2012 
and 2020, while Fig. 17.7b depicts the land use in 1922 and Fig. 17.7c depicts the 
shoreline changes in the last century. 

Within the administrative area, the island which originally had 47 villages has lost 
3 villages in the last century due to sea-level rise. The sinking islands have lost an 
area of 62.2 km2 to oceanic water intrusions due to rising sea level. The inundation 
of neighboring s is one of the major reasons for alterations in the landscape of the 
island. The main island has undergone severe land degradation, the natural woody 
vegetation in the south and east that use to protect against tidal surges is lost due 
to the anthropogenic pressures. The woody vegetation that was about 103 km2 is 
now reduced to 9 km2, whereas the cultivated areas (agriculture, horticulture) have 
increased from 124 to 193 km2.
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Fig. 17.7 Land use changes. a Land use 2012 and 2020, b land use 1922, c shoreline changes 
between 1922 and 2020
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In the last decade, understanding the effects of coastal intrusions, afforesta-
tion activities were carried out in the sedimented areas, particularly in the north, 
northeast, and southeast, mostly toward the island’s low-lying area. Built-up areas 
have increased by 2 folds, i.e., from 4.4 to 9.1 km2 indicating rampant growth. 
The increasing population and changes in landscape would lead to an increase in 
vulnerability and exposure conditions to local levels. 

According to the census of India, population of the island in 2001 was 185,644 
with 31,461 houses, by 2011 population increased to 212,037, with 43,716 houses. 
Building extraction in Sagar Island depicts the number of houses increased to 54,375 
by 2020. The population per household in the region is decreasing from 5.9 people per 
house in 2001 to 4.85 in 2011 and is expected to reduce to 4.07 by 2020. Accordingly, 
the island houses 222,772 residents in 2020. 

17.3.2 Land Use Visualization 

Agent-based model was used to understand the land use dynamic changes by 2050, 
based on (i) transitions between various land use classes between 2012 and 2020, 
(ii) contributing factors and constraints. 

Various agents causing land use changes used in the current AHP model are 
proximity to motorable roads, schools, city center, transport (bus station and docks), 
public services (hospitals, police station, banks) as depicted in Fig. 17.8. The model 
was calibrated considering the changes in land use between 2012 and 2020, with 
2012 as base year 2020 was simulated. The current CA-AHP model could simulate 
the land use for 2020 with an accuracy of 94% and kappa of 0.79. The calibrated 
model was then used to simulate land use for the year 2050, with land use 2020 as 
base year. The urban areas tend to increase from 905 to 2629 ha in the next 3 decades 
at the cost of agriculture, horticulture, and other spaces. The horticulture landforms 
would slightly reduce from 7970 to 7495 ha, while the agriculture landscapes would 
reduce from 11,398 to 10,254 ha between 2020 and 2050.

Beta population density, i.e., population to build up area ratio in 2020 is 246.16 
person per hectare, accordingly, population by the year 2050 is expected to reach 
664,103, and with 4.07 person per household, Sagar Island would be having 163,170 
houses. These houses are mostly located at relatively higher altitudes, in the prox-
imity of roads, concentrated at the north and between center to south due to various 
amenities in those regions. 

17.3.3 Coastal Exposure Analysis 

Coastal area exposure was carried using a zero connectivity bathtub planar model. 
Analysis of cyclone, rainfall, and surge heights shows that the cyclones are associated 
with heavy rainfall events and high storm surges. In the last 2 decades, there had been
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Fig. 17.8 Land use change causal factors and predicted land use 2050

three super cyclones (Table 17.4) in Sagar Island, and numerous depressions during 
this, the surge was over 3 m and rainfall was over 70 mm. Correlating surge and 
rainfall events indicate for every 10 mm rise increase in rainfall associated with 
storm, surge increased by 1.4 m. 

Rainfall analysis: Occurrence of severe cyclones is associated with exception-
ally high amounts of rainfall intensities, i.e., beyond 70 mm/day. In the last 7 
decades (1951–2020), IMD data indicate that precipitation events more significant 
than 70 mm/day are increasing at a rate of 5 events in a century. Month-wise decadal 
assessment indicates during May, rainfall over 70 mm/day increasing at three events

Table 17.4 Cyclones, surges, and rainfall 

Name Cyclone type Date Wind speed 
(knots) 

Surge (m) Rainfall (mm) 

Amphan Very severe 
cyclonic storm 

May 20, 2020 90 5–6 98.8 

Bulbul Severe cyclonic 
storm 

November 9, 
2019 

60 2 71.7 

Aila Severe cyclonic 
storm 

May 25, 2009 60 3 82.6 
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per century, while in the June 9 events, July 1 event, and October with two events 
per century, while in rest of the months, the rainfall with intensities over 70 mm/day, 
the trend was decreasing. In the last seven decades, in May, June, October, and 
November, there were more than 40 events with rainfall between 70 and 100 mm. 

Correlating rainfall and inundations depths depict at 70 mm/day rainfall the surge 
was 2 m, while at 100 mm/day, surge was about 5.5 m, and the maximum recorded 
surge is just over 12 m (BMTPC  2019), accordingly, rainfall causing these surges 
would be over 140 mm/day. 

Based on the frequency of events, various scenarios were developed (Table 17.5) 
to understand the exposure, and Fig. 17.9 depicts the zone of inundation under various 
scenarios. 

Scenario 1: These severe cyclones that are frequent, rainfall in these events ranges 
between 70 and 80 mm with wind speeds ranging between 48 and 63 knots. The surges 
during these kinds of events range between 1 and 1.8 m. Considering sea-level rise 
of 135 mm in the next 3 decades, inundation depths of 2 m are considered to derive 
exposure. Figure 17.9 depicts the zone of inundations overlaid of hill shade map of 
Sagar Island. With a depth of 2 m getting inundated, 12.9% of the Island account to 
30 km2, particularly along the east coast.

Table 17.5 Scenarios and inundation area 

Scenario Surge height Description Exposed area 

km2 % 

Scenario 1 Up to 2 m Very frequent, associated with 
severe cyclonic storms and are 
associated with rainfall events 
ranging between 70 and 80 mm 
(Bulbul cyclone, Orissa cyclone, 
Fani) 
Sea-level rise by 2020 would be 
135 mm at a rate of 4.5 mm/year 

30.0 12.9 

Scenario 2 <4 m Very frequent, associated with 
severe cyclonic storms and are 
associated with rainfall events 
ranging between 80 and 90 mm 
(Aila cyclone) 

87.9 37.8 

Scenario 3 <6 m Less frequent, associated with 
super severe cyclonic storms and 
rainfall ranges between 90 and 
110 mm (Amphan super 
cyclone) 

169.1 72.8 

Scenario 4 <12 m Extremely less frequent as 
recorded in government records 
(BMTPC 2019), these events are 
very severe and rainfall events 
over 140 mm 

232.3 100
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Fig. 17.9 Zone of inundation—scenario based

Scenario 2: These are also severe cyclone that are less frequent, i.e., once in 
10 years, rainfall in these events ranges between 80 and 90 mm with wind speeds 
ranging between 48 and 63 knots. The surges during these kinds of events range 
between 2 and 3.5 m. Considering sea-level rise of 135 mm in the next 3 decades, 
inundation depths of 4 m are considered to derive exposure. Figure 17.9 depicts the 
zone of inundations overlaid of hill shade map of Sagar Island. With a depth of 4 m 
getting inundated, 37.8% of the Island account to 87.9 km2, particularly along the 
coastline and traversing between the east coast and central parts of the island. 

Scenario 3: These are very severe cyclone or super cyclones that are less frequent, 
i.e., once in 30 years (1990, 2019), rainfall in these events ranges between 90 and 
110 mm with wind speeds ranging between 64 and 119 knots. The surges during 
these kinds of events range up to 4–6 m. Figure 17.9 depicts the zone of inundations 
overlaid of hill shade map of Sagar Island. With a depth of 6 m getting inundated, 
72.8% of the Island accounts to 169.1 km2, the central parts of the island to the 
southeastern zones (toward light house), and dry conditions prevailed. In order to 
compare the model’s performance, we compared inundation area for Amphan super 
cyclone whose surge was 5.5 m above the astronomical tide. Segmentation of Sentinel 
1A data dated 22 May 2020 (Fig. 17.10) indicates 144.6 km2 area was waterlogged 
and according to the zero connectivity bathtub model, an area of 148.1 sq. of area 
was waterlogged due to Amphan. The accuracy of the bathtub model was found close 
to 97.5% with reference to the ground observations.

Scenario 4: BMTPC (2019) records 12 m, likewise Kumar et al. (2000) indicate 
a 10 m surge height in the Sundarbans belt, these tidal heights can inundate entire 
Island. According to this scenario, the entire island would be inundated.
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Fig. 17.10 Zone of 
inundation during 
Amphan—Sentinel 1A

17.3.4 Variable Exposure Levels Based on Land Use Change 
Pattern 

Table 17.6 depicts the variable exposure patterns of assets and population to different 
inundation depths for the current and future land use scenarios. Land use assets 
(buildings, agriculture, and horticulture) would increase with increasing inundation 
depths. In the year 2020, the horticulture area exposed ranges from 7.4 to 22.9 km2 

for severe cyclonic storm events (Scenario 1 and 2). and for very severe cyclonic 
storm events (Scenario 3), horticulture area expose would range up to 54 km2, in  
very extreme cases (Scenario 4), when the surge heights are beyond 12 m, entire area 
under horticulture that would be exposed to floods, i.e., about 79 km2. With changes 
happening in landscape, by 2050, the area under cultivation tend to reduce with 
increasing habitation, and changes in cultivation patterns (agriculture to horticulture 
and vice versa).

In the first scenario, the area of the building that would be exposed would increase 
from 85.8 to 179.6 ha, at this state, the population exposed to flooding, mainly toward 
the east coast increase from 21 to 44 thousand from 2020 to 2050. Likewise, during 
very severe cyclonic storm events (Scenario 3), where the inundations are close to 
6 m about 75% of the population and building assets are exposed to flooding in 2020 
and 2050. The population and building assets that would be exposed to floods would
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Table 17.6 Assets and population exposed 

Exposure Year Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Horticulture (ha) 2020 742.3 2297.7 5417.6 7969.1 

2050 668.5 2105.8 5048.1 7493.6 

Agriculture (ha) 2020 2496.2 6473.7 10,289.1 11,398.0 

2050 2495.5 6210.0 9448.5 10,253.9 

Built-up (ha) 2020 85.8 319.2 687.9 904.4 

2050 179.6 838.5 2027.6 2696.1 

Built-up (Numbers) 2020 5193 19,318 41,632 54,735 

2050 10,870 50,747 122,712 163,170 

Population (Numbers) 2020 21,121 78,574 169,333 222,627 

2050 44,210 206,405 499,114 663,672

increase by 2.09, 2.63, 2.92, and 2.98 times between 2020 and 2050 for scenarios 1, 
2, 3, and 4, respectively. 

17.4 Discussion and Conclusion 

With changing global climatic conditions, the number of climatic disasters occurring 
in India is increasing at a rate of 1 every decade. Globally, 8 out of 10 major disasters 
with severe mortalities and physical damages are recorded in coastal India. The east 
coast, particularly toward the norther part of Bay of Bengal is one of the hottest 
hotspots for disasters. Globally, 75% of the worlds tropical cyclones causing over 
5000 mortalities are observed in Bay of Bengal cyclogenesis area. About 18–20% of 
the global climatic disasters are recorded in Coastal India, and 7 out of 10 oceanic 
and atmospheric-based disasters occur in the Bay of Bengal. 

Sagar is one of the most exposed habited islands along the Sundarbans. The island 
is geologically very young, formed by sedimentation of particles. The island since 
time immemorial has witnessed several destructive natural forces. Prior to British 
rule, the island was pristine with mangrove forests and treated as no man’s land 
due to these natural forces. But with anthropogenic concerns, the island has lost its 
native vegetation cover, making way for cultivation and human settlements. With the 
advent of human activities, the natural forces in the region are now termed as natural 
disasters since they negatively affect the human system. 

GIS and remote sensing technologies have paved way to visualize long-term land 
use changes, map disasters and their extents, model various scenarios to visualize 
future landscapes, hazards, etc., enabling better planning and risk reduction. 

Long-term assessment of land use using historic maps to recent very high-
resolution satellite data indicates in the last century (1924–2020) the native vegetation 
has reduced from 103 to 7.64 km2 in the main island, the cultivated landscape has
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grown beyond 75%. Built-up area extends over 9 km2 supporting above 0.22 million 
habitants in 54,735 houses. Using agent-based models for land use change predic-
tion, the built-up area is expected to grow by 2.98 times supporting 664,103 habitants 
in 163,170 houses. 

Analysis of tidal amplitudes (surge), rainfall events with respect to sever, and very 
severe cyclonic storm events in Sagar Island indicated that during severe cyclone 
storms, tidal surge range between 2 and 4 m with rainfall ranging between 70 and 
90 mm/day, while for very severe cyclone events, rainfall intensity was closer to 
100 mm/day with surges over 5.5 m. Assessment of rainfall intensity for the last 7 
decades (particularly non monsoon season) indicates the number of high intensity 
rainfall event are increasing over time. Based on the rainfall and surge height rela-
tionships, 12-m surges that are extremely rare are expected when the rainfall is over 
140 mm. These surges can inundate the entire island. Based on these characteris-
tics, four scenarios with depths of 2 m, 4 m, 6 m, and 12 m were used to simulate 
and identify the zone inundation using a zero connectivity bathtub flood model. The 
zero connectivity bathtub model outcomes were comparable to the inundation data 
derived for the Amphan event using Sentinel 1A data. 

In the first scenario, i.e., at inundation depth of 2 m, about 12.9% of the main 
island would submerge, at 4 m depths 37.8%, at 6 m depth 72.8%, and at 12 m depth 
100% island would be submerged. 

With varying inundation levels, the assets and people exposed to hazard vary. At 
inundation depths of 2 m and 4 m effectively during a severe cyclonic event, 32 km2 

and 87 km2 of cultivable lands are likely to be exposed to floodwaters for the year 
2020 and for very severe cyclone event, about 157 km2 of cultivable lands are likely 
to be exposed to floods. During these events, built-up areas that are likely to be 
exposed are 5k, 19k, 41k, and 54k for scenarios 1, 2, 3, and 4, respectively, likewise 
population exposed would be 21k, 78k, 169k, and 222k, respectively. By the year 
2050, population exposed would increase to 44k, 206k, 499k, and 663k for scenarios 
1, 2, 3, and 4, respectively. Agriculture and horticulture land assets exposed between 
2020 and 2050 would decrease between 2 and 5% for severe events (Scenario 1, 2) 
and by 8% for very severe event (Scenario 3, 4). 

The SENDAI framework for disaster risk reduction 2015–2030 (UNDRR 2015) 
emphasized reducing the disaster risks caused by natural hazards through effective 
management for sustainable development. SENDAI framework defines seven global 
targets that includes (i) reducing global mortalities and people affected by disas-
ters, (ii) reducing loss on basic infrastructure and services, economy, (iii) improving 
resilience through local disaster risk reduction strategies, (iv) increase availability 
and accessibility of multi-hazard early warning systems and disaster risk information 
and assessment to people. 

Some of the disaster risk reduction and adaption measure include (NDMA 2020; 
UNDRR 2015; IPCC  2014), viz. anticipate–plan and reduce risk; reduce–expo-
sure, vulnerability; multi-dimensional; iterative learning; protect, retreat, accom-
modate; protect people; habitat relocation; capacity building; hazard exposure and 
risk mapping; alternate livelihood and food source; introducing, conserving, restoring 
mangroves, marshes, sea grasses; maintaining sediment; recognizing importance and
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protecting coastal ecosystems; restoration and maintenance of drainage systems, their 
connectivity’s; providing amenities (motorable roads, health facilities). 

Based on the above risk reduction strategies, in the current article, we integrate 
mapping inundation hazard exposures by considering oceanic effect and climatic 
effects. This would aid in anticipating the effects of hazards, helps the local adminis-
tration and planning authorities to plan and reduce the amount of damage, mortalities 
due to hazard at regional scale. 
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Chapter 18 
Three-Dimensional (3D) Noise Pollution 
Visualization via 3D City Modelling 

Muhamad Uznir Ujang, Nurul Qahirah Dzulkefley, Suhaibah Azri, 
and Syahiirah Salleh 

Abstract Noise pollution is an excessive sound that can affect human health and 
environmental quality. There is a lot of research on environmental pollution, such as 
air and water pollution, but little research on noise pollution. People do not realize 
the potential of sound to pollute the environment. This research aims to visualize and 
provide noise-level information that can lead to noise pollution. The output of this 
research is the visualization of the noise level in 3 dimension (3D). A 3D geometrical 
database and the noise level are modelled and processed into a 3D environment. Due 
to insufficient noise pollution in 2D representation, this chapter presents a 3D noise 
visualization approach as it offers significant insight into situations where 3D noise 
effects are relevant. 

Keywords Noise pollution · Noise level · 3 dimension · 3D visualization 

18.1 Introduction 

Nowadays, many people live in urban areas because it has a lot of advantages over 
rural areas, having more opportunities and better living conditions. The urban area 
can offer access to creativity, innovation, diversity and information, improved health, 
higher literacy, and a better quality of life (Nasution et al. 2020). However, the inter-
action between humans and the environment brings a lot of environmental pollution, 
especially in urban areas. Several types of pollution include air pollution, light pollu-
tion, water pollution, soil pollution, and noise pollution. Noise is the most overlooked 
form of pollution because it is not regarded as vital to life compared to water and 
air; noise is hardly an annoyance to people. Environmental noise is a progressively
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common feature of urban areas that can be perceived as unwanted in non-occupational 
settings (King et al. 2012). Additionally, noise pollution visualization is frequently 
displayed in a two-dimensional (2D) format. As a result, the visual interpretation 
of noise pollution becomes more complicated. For instance, the noise itself moves 
in 3D. Thus, with the progress of 3D modelling, this issue can be overcome, and 
noise pollution data can be presented in a 3D environment. Nonetheless, particular 
processes must be developed to ensure that they are carried out appropriately. 

A sound is a form of energy that the human ear can detect. Sound can travel 
through the air and other media such as water or steel. Noise is an unwanted sound 
produced by many sources, such as an operating machine tool, ambulance siren, 
thunderclap. Noise pollution is an excessive sound that can affect human health and 
environmental quality. Sound level is measured in decibels (dB). It has exposure 
limits derived from the World Health Organization (WHO) recommendation that 
sound levels below 70 dB are not damaging and are considered loud when they 
exceed 80 dB. Its exposure limit is 40 h per 7 days. From the national standard limit 
and WHO, the noise level in urban areas must not exceed 65 dBA at noon and not 
exceed 55 dBA at night (Ismail and Hussain 2001). Human hearing can be impacted 
by the loudness of the sound and how long the exposure to them is. For example, if a 
person is exposed to loud sounds in a concert, it could cause temporary hearing loss. 

There are many effects of noise pollution on human health when continuously 
exposed for months or years, such as mental health. For example, people living near 
the airport will hear continuous noise that can increase irritation and not focus on their 
things (Lefèvre et al. 2020). It can affect their concentration on doing something in 
their daily life. Besides, noise can awaken people from sleep and be very disruptive, 
resulting in physical, mental, or emotional illness if they face frequent sleep distur-
bance. The vital point besides physical problems is psychological problems (Goines 
and Hagler 2007). The way to prevent and protect your hearing is by knowing where 
you want to go, and if you are going to be exposed to loud sound levels, make sure 
to use an earplug or noise-cancelling headphones. The better way is to move to a 
quieter area and avoid exposure to the loud sound level. After hearing the loud sound, 
it is advised to give your ears a break. Noise is moving in 360° which contains area 
and height, and we can identify where the noise is travelling with three-dimensional 
(3D) noise mapping, especially on a building. 

In line with technological developments, the presentation of geospatial data has 
changed dramatically. The need for 3D models is growing and expanding rapidly in 
various fields (Singh et al. 2013). The 3D in geographic information system (GIS) 
brings z value into mapping, including elevation data. The geometry and composition 
of an urban environment are described using a digital 3D city model (Julin et al. 
2018). The 3D city models have become crucial for various applications such as 
visualization for navigation, planning. The 3D city model application has become 
well known and continuously increases. This model can present on the web, and it has 
a lot of advantages that people can access everywhere and at any time. Therefore, the 
tools for web-based implementations of virtual globes, which allow users to navigate 
their data in 3D, have been available with more significant numbers of functionality 
(Sadidi et al. 2020; Jovanović et al.  2020; Ramlee et al. 2019). The 3D geographic
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information system (GIS) applications have a good base as online virtual web globes 
provide it. It is essential to develop 3D noise maps that can show the influence of 
noise in all directions. 

The purpose of the study presented in this chapter is to provide a mechanism 
for utilizing 3D GIS technology to visualize noise pollution in a 3D environment. 
Current methodologies are primarily designed to display noise pollution on a two-
dimensional (2D) platform. It reduces the scattering of pollution itself, which flows 
naturally in 3D. Dedicated approaches are being developed to attain this goal by 
using 3D city modelling technologies in 3D GIS. The following section will provide 
some further aspects of 3D city modelling. 

18.2 City Modelling 

The development of 3D models as a virtual environment can also be extended further 
to provide a sound foundation for performing analysis, simulations, and other appli-
cations (Azri et al. 2020; Ujang et al. 2018). For instance, a digital twin of a city with 
a high level of detail will include road networks and buildings that can be used for 
visibility analysis, urban heat island detection, and air quality simulations (Beil et al. 
2020). The 3D models can also be constructed to document historical structures such 
as windmills as part of cultural heritage conservation (Smaczyński and Horbiński 
2021). This can also be extended to immersive and interactive virtual reality visual-
ization of prehistoric artefacts (Büyüksalih et al. 2020). At a building scale, highly 
detailed 3D models offer support for applications for noise analysis, energy usage, 
and others (Lim et al. 2020). Underground infrastructure such as drainage pipes and 
3D models of buildings can facilitate urban flooding simulations by including other 
data such as elevation, water flow, volume, and others (Shen et al. 2020). However, 
3D visualization or models cannot remain as merely graphical output to implement 
such applications for analysis and simulations. In addition to being a digital twin, 
3D models should ensure the maintenance of spatial and non-spatial attributes and 
geometric, semantic, and topological characteristics (Ujang et al. 2019; Salleh et al. 
2020). Although virtual environments are essentially replicas of the real world, it 
remains a visualization open to the perception of developers or users and without 
standards. 

To standardize 3D city modelling, CityGML was established by the Open Geospa-
tial Consortium (OGC) as an international standard and open data model for 3D city 
modelling (Gerhard and Lutz 2012). The development of CityGML was targeted 
to be a shared definition of entities, attributes, and relationships within a 3D city 
model (Kolbe 2009). Similar to the compliance of the CityGML data model to ISO 
Standards, the schema for CityGML also complies with OGC’s Geography Markup 
Language GML3 (GML 3.1.1) (Open Geospatial Consortium 2012). The entities in 
a 3D city model can also be represented in five scales or Levels-of-Detail (LoD) 
(Gröger and Plümer 2012). LoD0 is generally a 2.5D model of the terrain, including 
building footprints or roof edges. LoD1 represents buildings as blocks with smooth
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and planar roofs. In LoD2, the roof of a building will be segregated from other 
thematically different building surfaces. LoD3 allows the definition of architectural 
details of wall and roof structures. LoD4 provides an interior layout for the building, 
including rooms, stairs, doors, and other structures. In constructing virtual 3D campus 
models, CityGML enables interoperability with future city models that can be used 
for different applications. 

University campuses can be considered miniature cities with buildings within a 
large area. Nonetheless, campuses should also be modelled in 3D to serve as the foun-
dation for enabling smart cities of smart campuses. A similar approach was demon-
strated for transforming historical buildings into CityGML models from vector Esri 
Shapefiles obtained from point cloud data (Pepe et al. 2020). FME software was also 
utilized to convert multiple data sources to build CityGML models of detailed street 
systems and 3D tile files for 3D web visualization (Beil et al. 2020). Another study 
integrated various data sources using FME to produce a comprehensive CityGML file 
for managing urban flooding (Shen et al. 2020). To model a campus in 3D, various 
approaches to modelling buildings can be applied. One of the main differences in 
modelling approaches depends on the available data. 

18.3 Framework of 3D Noise Pollution Modelling 

To perform the 3D noise mapping, the noise-level data needs to be obtained. The 
noise-level data is taken in the buildings in the study area. The device used is Smart 
sensor AS804; as depicted in Fig. 18.1, the unit is decibel. This noise-level meter 
measures sound pressure and is commonly used in noise pollution studies to quantify 
almost any noise, especially for industrial, environmental, and aircraft noise. It is a 
type of sound measure level meter commonly used in noise pollution studies to 
quantify noise. The measuring level is 30–130 dBA (decibels).

When the noise level for the study area is obtained, the data needs to be stored in the 
database. The database tool used in this research is PostgreSQL. A simple database is 
used for this research that does not require any relation between tables. PostgreSQL 
comes with tools that can connect to cloud services. Figure 18.2 shows the name of 
the table in the database. The column of the database is shown in Fig. 18.3.

The noise level is applied to buildings in the 3D modelling. The noise charac-
teristics are unique, and it moves in 360° directions. Thus, a 3D building model is 
the best model to perceive the scenario. It can show how the noise is moving in the 
model. Figure 18.4 shows the layer used to design the 3D buildings.

This research study area is in Universiti Teknologi Malaysia, Johor Bahru campus. 
The 3D model of the building is created using SketchUp 3D modelling software. OSM 
is used as a base for the building, and Google Maps is referred to the design of the 
buildings. The measurement of the buildings is followed by actual measurement in 
real life. For example, the height of each level is standardized into 3 m. The total 
number of buildings model in this research is 50 buildings with 175 levels altogether.
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Fig. 18.1 Smart sensor AS804

Fig. 18.2 Table names for the database
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Fig. 18.3 Columns in noise-level table

Fig. 18.4 Layers used for 
3D building
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Fig. 18.5 Three-dimensional building model 

The 3D model for buildings in the study area is established from OSM satellite 
imagery. OSM satellite imagery is exported and imported into SketchUp. The ruler 
in Google Maps is used to estimate the length and width of the buildings, and using 
street view images, the design and the structure of the building in 3D could be 
identified. From that, the ground surface of the building can be drawn, followed by 
a wall surface and roof surface. Figure 18.5 shows an example of the 3D model. 

18.4 The 3D Noise Pollution Visualization 

This research applies the accumulated noise-level data to the 3D buildings for every 
level/floor. The colour for the lowest noise level is moderate sea green, and the 
highest noise level is deep blue-violet. The colour contrast is intended to show the 
difference for each 5 dB noise level. The final 3D buildings with noise colour applied 
are exported into the Collada file (.dae) to be used in Cesium. These 3D buildings are 
in their actual geo-location to be placed precisely on the terrain. Visualizing noise 
mapping in Cesium helps users recognize how noise pollution affects the building. 
Users can perceive the buildings as it is in real life by using this approach. Figure 18.6 
shows several results of 3D buildings created in this research.

The noise level is observed in 3 different phases. The phases are in the morning 
(7.00 am until 8.30 am), noon (12.30 pm until 1.30 pm), and evening (4.30 pm until 
5.30 pm). The phases were selected based on the justification that the total number of 
vehicles is relatively high for the specified period in each phase. It can be considered 
a high number of vehicles in the morning due to staff and students coming to work
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Fig. 18.6 Three-dimensional building models for Block B02, B04, B05, B07, B08, B09, and B10

and attending lectures while in the afternoon is a common break time where it is 
usually used for lunch or other personal matters. 

Meanwhile, in the late afternoon, the high traffic flow was due to staff and students 
returning from campus to their respective residences. As additional information, the 
study area for this research is made in the university campus. Thus, the primary 
source of noise pollution comes from motor vehicles. However, if the study area 
involves other areas, such as industrial areas, then other noise pollution factors must 
be considered in calculating noise pollution. Figures 18.7, 18.8, and 18.9 show some 
snapshots of the data collected in the three phases. 

In Cesium, the 3D models are visualized based on the phases observed. This infor-
mation benefits the user since it helps them know exactly where the noise pollution

Fig. 18.7 Noise-level data for Phase 1 (7:00 am–8:30 am)
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Fig. 18.8 Noise-level data for Phase 2 (12:30 pm–1:30 pm) 

Fig. 18.9 Noise-level data for Phase 3 (4:30 pm–5:30 pm)

is around them, be more sensitive to noise pollution, and learn how to prevent it. 
Figures 18.10, 18.11, and 18.12 show the visualization of the noise level in Phase 1, 
Phase 2, and Phase 3 for the entire study area, respectively.

In this research, there are two approaches performed. First, the 3D building model 
built is mapped with noise pollution visualization on each building level. The colour 
difference shown differentiates the noise level for each level involved. As mentioned 
earlier, each colour difference has a different value of 5 dB. To begin, the lowest noise 
level is found in moderate sea green colour (35–39 dB), pale yellow (50–54 dB), 
brilliant tangelo (60–64 dB), brilliant red, and moderate amaranth (65–74 dB). It 
progresses to the highest noise level found in dark rose and deep blue-violet (75 dB 
and above).
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Fig. 18.10 Three-dimensional noise-level visualization for Phase 1 (7:00 am–8:30 am) 

Fig. 18.11 Three-dimensional noise-level visualization for Phase 2 (12:30 pm–1:30 pm) 

Fig. 18.12 Three-dimensional noise-level visualization for Phase 3 (4:30 pm–5:30 pm)
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These colours describe the noise-level data observed in the three phases of data 
acquisition (source from motor vehicles). However, the second approach is to visu-
alize the noise level in the building (interior). This noise may be caused by the 
air-conditioning system and other mechanical machine tools found in the building. 
The main university library building (Sultanah Zanariah Library) is used to realize 
this. This is because the library requires to be in a relatively quiet place compared 
with other academic buildings. Based on Fig. 18.12, the library building is in the 
model’s centre and to the left of the university’s mosque building. Figures 18.13 and 
18.14 show the indoor and outdoor noise visualization, respectively. 

The noise level in the study area surpasses the noise level recommended by the 
Malaysian Department of Environment (DOE). The noise level recommended for 
daytime in the educational area is below 50 dBA and for a library (indoor) is 40– 
45 dBA. It is significant to adhere to the recommended noise level to ensure the 
environment is conducive to academic activities. If not, it will affect the environment, 
and the educational activities cannot be carried out properly. The difference between

Fig. 18.13 Indoor noise level at Sultanah Zanariah Library 

Fig. 18.14 Outdoor noise-level visualization 
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Fig. 18.15 Acquired noise-level 3D model 

Fig. 18.16 Ideal noise-level 3D model 

the ideal noise-level 3D model and the acquired noise-level 3D model in the morning 
for the study area is depicted in Figs. 18.15 and 18.16, respectively. 

Apart from that, observations were also made on the three phases observed. Obser-
vations are made to see which building has the highest noise-level value. It aims to 
examine further which buildings need to be given more attention to addressing this 
noise control. Figures 18.17, 18.18, and 18.19 show the buildings with the highest 
noise pollution values for each phase observed.

18.5 Discussion 

Based on noise-level mapping of the campus’s buildings, it was determined that the 
buildings with the highest noise levels are Building C19, Building E04, and Building 
B12 for Phases 1 through 3. According to the observations made, it is apparent that 
the bottom level (ground floor) has a greater noise level than the higher floor level. 
Additionally, rooms or areas close to the road network have a more significant reading 
than those not.
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Fig. 18.17 Building with the highest noise level in Phase 1 (Building C19) 

Fig. 18.18 Building with the highest noise level in Phase 2 (Building E04) 

Fig. 18.19 Building with the highest noise level in Phase 3 (Building B12)

The reason why these three buildings had the highest values in each of these 
phases, on the other hand, remains uncertain. According to information about the 
campus’s road network and the locations of bus stops, it was determined that these 
three buildings had some similarities. To begin, these buildings are situated alongside 
the campus’s main road. Additionally, Buildings C19 and E04 are near a bus stop, 
where students extensively use bus services during the designated phases. The B12 
building is positioned adjacent to the main campus entrance route utilized by students 
and the bus transporting them back to their various residential colleges. It occurs
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exclusively in the afternoon, while students use alternate routes to faculty buildings 
during the morning (Phase 1) due to the campus’s deployment of a one-way street. 
It explains why these areas attract users while increasing the area’s noise level. 

To elucidate, without the visualization developed in this research, determining 
the source of noise pollution or the location of the noise level is rather difficult. It is 
because the sound properties themselves are not visible but only audible. It cannot 
be accurately measured without the use of specialized instruments. Following that, 
the free-moving character of sound in physical space demands 3D modelling. Using 
3D city modelling techniques in conjunction with noise pollution data, it is feasible 
to visualize noise pollution throughout the whole study area. It visually identifies 
the location or structure with a noise level that exceeds the specified noise level. It 
is possible to determine the source of pollution by combining satellite images as a 
base map with other information such as road networks. Additional measures can be 
undertaken on campus to prevent this from happening. 

18.6 Conclusion 

To sum up, noise pollution can occur anywhere and at any time. It is also likely that 
the level of human acceptance of noise pollution will oscillate throughout time. On 
the other hand, the World Health Organization has offered a basic guideline to prevent 
this noise pollution from becoming severe. Activities carried out for a place or an 
area can be controlled and classified using these criteria and divided into categories. 
Example: Industrial zones inherently require the usage of heavy machinery, which 
results in the indirect emission of relatively loud and disagreeable noises that are 
audible to members of the public. As a result, industrial zones can be classified 
in advance of their development, allowing for more efficient planning. Furthermore, 
activities or projects involving the public should not be located close to this industrial 
region since it is anticipated that the excessive noise will degrade the quality of life 
of those who live in the neighbourhood. 

By utilizing the technique described in this chapter, it is possible to observe the 
degree of noise in a 3D environment using 3D city modelling software. This 3D 
visualization can aid in visualizing the effects of noise on the surrounding envi-
ronment because the sound itself is unseen and moves in 360°. Additionally, more 
efficient and organized planning, such as development planning, is conceivable in 
future. For instance, an institution may impose a vehicle restriction through a specific 
educational area (with a high noise level).
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18.7 Recommendations 

The study area used in this study is based on the campus environment. The campus 
should have a quieter and more regulated environment. As a recommendation, this 
research can be further expanded to other areas such as residential, industrial, recre-
ational, and even government administrative office areas. Other factors of noise pollu-
tion should be considered. It can help achieve a healthier life towards improving the 
quality of life for sustainable development. 

Future research should incorporate the 3D city modelling proposed in this research 
with the effect of noise pollution on human health and well-being. Especially in the 
urban area, which is well known for its busy life, lively night atmosphere, the hustle 
and bustle of the city, to some extent, has undoubtedly affected the health of the city’s 
residents. Based on the initial study in this research, the space below (ground floor) 
is more affected by noise than the space upstairs. It has given an early indication that 
noise pollution could disrupt the health levels of the city’s residents. However, this 
matter needs to be studied further and supported by more scientific research facts. It 
definitely will benefit the well-being of the city’s residents in future. 
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Chapter 19 
Decadal Satellite Data Analysis for Flood 
Hazard Mapping: A Case Study 
of Eastern Uttar Pradesh 

Suchita Pandey, Nilanchal Patel, and Ajay Kumar Agrawal 

Abstract Flood is a natural havoc faced in many parts of India. The districts of 
eastern Uttar Pradesh falling under the Rapti river basin are most vulnerable to and 
severely affected by flood. Assessment of flood inundation and flood water stagna-
tion has been conducted for a decade from 2008 to 2018 by using satellite datasets. 
Vulnerability analysis for flood-affected areas is based on the RADARSAT data avail-
able during monsoon season. The Synthetic Aperture Radar dataset has been used 
together with the hydrological data for estimating the period of stagnation, recurrence 
of flood hazards, and flood inundation. The changes in frequency of floods and its 
severity and the spatial extent of flood-affected areas from 2008 to 2018 have been 
determined from the analysis of the organized flood hazard database with spatial 
extent in GIS. Among the 14 districts of Rapti River basin, seven are found to be 
most vulnerable and heavily affected by the flood hazard viz. Gorakhpur, Shravasti, 
Maharajganj, Balrampur, Siddharthnagar, Deoria and Sant Kabir Nagar. Spatial inter-
section technique has been implemented in GIS to determine the stagnated flood water 
areas. 

Keywords Flood hazard · Flood inundation · RADARSAT data · Rapti river basin 

19.1 Introduction 

Flood comes when the river overflows. Flood means havoc created by nature. It 
is a natural disaster that has been affecting the Indian lives and economy for last 
several years. Floods worldwide, beyond loss of life, also cause many millions of
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dollars’ worth of damage each year to crops and property. Flood inundation is a major 
hazard worldwide. Its prediction and prevention require considerable investment, 
apart from socio-economic consequences of severe flooding episodes. Better flood 
extent prediction is relevant to a significant percentage of the global population. Water 
stagnation during floods also creates many diseases spread to the surrounding area 
like malaria and other water-borne diseases. It is also important to raise fundamental 
scientific issues and challenges relating to remote sensing, distributed environmental 
modeling, risk analysis, and uncertainty. In recent years, remote sensing of flood 
plain environment has increasingly become an operational tool that may begin to 
solve some fundamental problems in flood conveyance estimation. 

A flood-inundated area was detected using JERS-1/SAR data in the central plain of 
Thailand. The area is related with micro-geomorphology. It has the possibility that 
agricultural damage by flood can be estimated using both SAR data and geomor-
phologic maps (Yamada 2001). Preparation of a comprehensive flood hazard map 
for deltaic part of West Bengal state would be one of the most crucial steps for 
implementing non-structural remedial measures for floods and the study attempts 
to synthesize the relevant database in a spatial framework to evolve a flood hazard 
map for Genetic West Bengal (Sanyal and Lu 2003). The satellite rainfall product 
assessed was NASA’s Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 
Precipitation Analysis (TMPA) product called 3B41RT which is available in pseudo 
real-time with a latency of 6–10 h. Scientists observed that bias adjustment of satel-
lite rainfall data can improve application in flood prediction to some extent with the 
trade-off of more false alarms in peak flow. However, a more rational and regime-
based adjustment procedure needs to be identified before the use of satellite data can 
be institutionalized among flood modelers (Harris et al. 2007). 

Flood Inundation Mapping of the Sparsely Gauged Large-Scale Brahmaputra 
Basin Using Remote Sensing Products was done and it was shown that the Nash 
Sutcliffe coefficient of the model with the uncorrected rainfall data in calibration 
and validation were 0.75 and 0.61, respectively whereas the similar values with the 
corrected rainfall data were 0.81 and 0.74. The output of the hydrological model was 
used as a boundary condition and lateral inflow to the hydraulic model. Modeling 
results obtained using uncorrected and corrected remotely sensed products of rainfall 
were compared with the discharge values at the basin outlet (Bahadurabad) and with 
altimetry data from Jason-2 satellite. The simulated flood inundation maps of the 
lower part of the Brahmaputra basin showed reasonably good match in terms of the 
probability of detection, success ratio, and critical success index (Bhattacharya et al. 
2019). The fusion of remote sensing, social media, and topographic data sources 
developed a Bayesian statistical model to estimate the probability of flood inunda-
tion through weights-of-evidence analysis. The experiments were conducted using 
data collected during the 2014 UK flood event and focus on the Oxford city and 
surrounding areas. Using the proposed technique, predictions of inundation were 
evaluated against ground-truth flood extent. The results report on the quantitative 
accuracy of the multisource mapping process, which obtained area under receiver 
operating curve values of 0.95 and 0.93 for model fitting and testing, respectively 
(Rosser et al. 2017).
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The Wavelet Transformed Classification Method provides the texture information 
of SAR images. This information is assigned as the component of the feature vector 
of a pixel. Classification using this method was successfully applied to a merged 
SAR image. Results indicate high classification accuracy for all the classes (Chum-
samrong et al. 1998). The basin areas under Ghaghra and Rapti rivers were studied 
during August 2017. The thresholding and unsupervised classification technique 
have been used to map the inundated areas due to incessant rains. High-resolution 
multi-temporal Synthetic Aperture Radar (SAR) and Optical images were used to 
calculate the zonal statistics to find the inundated area in each district of the selected 
Area of Study (AOS). The obtained results are validated against the meteorological 
observations. From the findings, it is evident that SAR data can effectively be used 
for flood water mapping and flood monitoring. These findings will therefore help 
to minimize the flood hazard impact and aid in augmenting the flexibility in flood 
management (Anusha and Bharathi 2020). 

There is an advanced study that reviews theories and algorithms of flood inun-
dation mapping using SAR data, together with a discussion of their strengths and 
limitations, focusing on the level of automation, robustness, and accuracy. The results 
of the study show that the automation and robustness of non-obstructed inundation 
mapping have been achieved in this era of big earth observation (EO) data with 
acceptable accuracy, however, for the detection of beneath-vegetation flood mapping, 
L-band or multi-polarized (dual or fully) SAR data along with the ancillary building 
and topographic data are more useful (Shen et al. 2019). 

In one of the studies that caused instant flooding and inundation, the scientists have 
used SAR data combined with the other datasets. Two hours of rain in November 2002 
was enough to create total chaos in several parts of the city and its outskirts. The study 
area comprises Velachery and its surrounding. Their datasets comprised RADARSAT 
SAR of November 2002, IRS LISS III and PAN merged imagery of 2002, maps of 
Adyar and miscellaneous watersheds (4C2C2), Survey of India Toposheets, and 
Rainfall level data of November 2002 (Ramalingam and Vadivukkarasi 2005). An 
assessment of Maryland’s vulnerability to flood damage has been done by the Mary-
land Department of the Environment (MDE) and the Eastern Shore Regional GIS 
Cooperative (ESRGC) at Salisbury University. The model was used to provide an 
independent analysis to collaborate some of the Department’s flood hazard data and 
to test the usefulness of the new software. Strategies to mitigate the effects of flooding 
are outlined, including regulations, the State Model Floodplain Management Ordi-
nance, local mitigation planning, the floodplain management database and repetitive 
loss project, mapping of risk, flood insurance, dam safety, stormwater management 
regulations, wetland regulations, growth management, sea level response strategy, 
and “no net adverse impact” watershed planning (Joyce and Scott 2005). 

In another study that aimed at flood disaster resilience through composite index 
allows us to understand and identify the resilience capacity in eastern U.P. Secondary 
data is used for this study and indicators are proxy indicators that comprise five 
parameters viz. physical, social, economic, infrastructural, and community capacity. 
Districts are selected on the basis of the extent of flood-induced inundation. The 
results show that districts having higher composite index values are more capable of
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coping with the disaster. Least resilient districts need to adopt improved mechanisms 
to become more resilient (Mishra and Mohapatra 2019). Another study revealed the 
significance of remote sensing and GIS for developing a flood inundation model 
to assess the flood-affected areas and number of flood-inundated villages in each 
district in almost real-time. 

Uttar Pradesh is one of the states which faces flood problems every year. The 
present study indicates the significance of Remote Sensing and GIS for developing 
a flood inundation model to assess the flood-affected areas and numbers of flood-
inundated villages in each district of Uttar Pradesh in almost real-time. This includes 
an attempt to take decision in near real-time on flood management for planners 
and decision-makers using microwave remote sensing satellite data (RADARSAT 
and RISAT). The model generates statistics of flood-affected areas near or in the 
village, affected blocks, and districts within two hours after receiving flood layers 
from the National Remote Sensing Center (NRSC), Disaster Management Division, 
Hyderabad. On the basis of this model, the relief and rescue operation may be planned 
in more effective manner and saving human lives and livestock (Shukla et al. 2015). 
In a different study the two flood-prone blocks of Ajay River Basin in West Bengal, 
India have been studied for flood risk assessment and hazard identification. For flood 
analysis, flood spread area and flood height are considered. From the result of flood 
prediction in Ausgram II, 13% of the block area and 17% of the block population, 
and in Nanoor, 21% of the block area and 28% of the population are affected (Mondal 
et al. 2020). 

A survey study has been done by Ding et al. (2021) for flash floods by using 
remote sensing and GIS technique. First, a visualization analysis of the literature is 
performed, including a keyword co-occurrence analysis, time zone chart analysis, 
keyword burst analysis, and literature co-citation analysis. Then, the application of 
remote sensing and GIS technologies to flash flood disasters is analyzed in terms 
of aspects such as flash flood forecasting, flash flood disaster impact assessments, 
flash flood susceptibility analyses, flash flood risk assessments, and the identifica-
tion of flash flood disaster risk areas. In a different study by Hong and Abdelkareem 
(2022) the remote sensing and GIS technique is used to indemnify the flood-prone 
areas and their prediction for optimum use of groundwater resources has been done. 
In this study, the ALOS/PALSAR and SRTM data allowed revealing geologic struc-
tures, hydromorphic characteristics, and delineated prone areas to flash flood hazards 
(FFHs). Multi-criteria information that controls the occurrence, movements, and 
infiltration capacities were combined after applying weight factors. Such information 
stemmed from remotely sensed and ancillary data which were used through a GIS-
based method to reveal the optimum zones of water resources. The result proves that 
about 14.88% of studied basin considers a promising zone of groundwater probability 
and denotes the most likely portion for further exploration.
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19.1.1 Significance of the Work 

SAR images are used in the current study to extract the flood layers. The approach 
comprises extraction of the texturally homogeneous areas representing water surfaces 
on the SAR images. With this approach, flood mapping has been done on the flood 
layers extracted from the SAR images of the study area. Ghaghara and Rapti are 
the main rivers that cause floods in Uttar Pradesh. The Rapti river emerges from 
the higher Himalayan region in Nepal (Thapa 1997). It comprises a large catchment 
area in the upper Nepal region and major flood-prone catchment in the eastern Uttar 
Pradesh. The lower catchment of the Rapti basin receives heavy runoff from the 
upper catchments in Nepal. The West Rapti is a tiny river by comparison with the 
rivers like Kosi, Gandak, and Karnali. The average annual flows of the Kosi, Gandak, 
and Karnali rivers are in the range of about 1500 cumecs, whereas the average annual 
flow of the West Rapti river is only about 100 cumecs. The West Rapti river water 
is extensively used for irrigation in the Nepalese territory, as a result, this river 
almost dries up throughout the dry seasons. However, during the monsoon season, 
the damages due to the West Rapti river floods are not insignificant despite the fact 
that this is relatively a very small river. In recent times, almost every year widespread 
submersion and loss of life and property in the Indian territory due to the West Rapti 
river floods are reported. The rise of the West Rapti water level is exceptionally high 
at the time of big floods. 

In the last century until 1975, the recorded highest flood water level of the West 
Rapti river at Birdsghet near Gorakhpur area had exceeded the warning stage level by 
a huge margin of over 9 ft. By comparison with the West Rapti river, the peak flood 
water level rises in the other rivers are relatively small. No wonder the West Rapti 
river’s high floods devastate vast areas of land despite the fact that it is relatively a 
small river. 

19.1.2 Purpose 

The districts of Rapti basin in Uttar Pradesh that are heavily affected by flood are viz. 
Gorakhpur, Shrawasti, Maharajganj, Balrampur, Siddarthnagar, Deoria, St. Kabir 
Nagar. The flood analysis of eastern Uttar Pradesh region has been done for the 
following purposes: 

• To delineate the main districts of the Rapti catchment in eastern U.P., which are 
most vulnerable to flood and are severely affected by floods during the last several 
years. 

• To assess the damage caused by floods in the districts based on the analysis of the 
stagnation period of water.
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Vulnerability analysis for the flood-affected villages is based on the RADARSAT 
data available during the monsoon season. Flood inundation mapping on the various 
dates provides real-time information for relief and mitigation of floods and is useful 
to provide control measures from flood. 

19.1.3 Study Area 

The study area lies in the lower sub-catchment of Rapti, distributed in the 
parts of Indo-Gangetic plain and contains 14 districts of eastern Uttar Pradesh 
viz. Bahraich, Shrawasti, Gonda, Siddarthnagar, Balrampur, Basti, Maharajgunj, 
Gorakhpur, Deoria, Mau, Azamgarh, Ballia, Kushinagar, and St. Kabir Nagar. The 
topography is almost flat, with high sediment load. The area is flood-prone and 
adversely affected by EL-NINO (ENSO) or southern oscillations. The study area has 
subtropical climate with high temperatures in summer and low in winter. The highest 
temperature rises up to 48 °C in summers and falls up to 8–10 °C in winter. The soils 
of the region are deep, excessively drained to well and moderately drained, sandy 
soils on gentle slopes with loamy surfaces and moderate erosion (Fig. 19.1).

19.1.4 Research Objectives 

1. To perform vulnerability assessment of the flood-affected districts (eastern Uttar 
Pradesh) of the Rapti catchment area. 

2. To perform stagnation studies for flood-affected areas. 
3. To carry out flood inundation mapping using RADAR datasets. 

19.1.5 Data and Software Used 

1. RadarSAT-1 data of various dates in year 2008. 
2. RadarSAT-2 data of various dates in year 2018. 
3. Base data of the district and block boundary. 
4. Software Arc GIS ver.9.1
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19.2 Methodology 

19.2.1 Data Acquisition 

The extracted flood layer and the district boundary layer are provided by the Remote 
Sensing Application Center, Lucknow, U.P. 

19.2.2 Data Analysis 

The flood-affected areas of the Rapti river cover much parts of eastern Uttar Pradesh. 
The present study is focused on the inundation and stagnation mapping for flood 

of Rapti river during the year 2008. There is total of 14 districts lying in the study 
area which are heavily prone to flood. 

The SAR data acquired from the NRSC (Hyderabad) is the essential component 
to derive the information about floods even during the cloudy days of monsoon. The 
extracted flood layer through the processed SAR data is used for the study (Fig. 19.2).

19.2.2.1 Flood Inundation Mapping (2008) 

Spatial overlay technique is adopted for the generation of the inundation maps with 
the help of software Arc GIS (ver 9.1) developed by ESRI. By the spatial intersection 
of the flood layers of the various dates with the district layer of the study area, 
the corresponding flood inundation maps have been generated. The district-wise 
inundated areas have also been determined. The flood inundation maps of the various 
dates and their corresponding information about the affected areas of the district 
are shown in Figs. 19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 19.9, 19.10 and 19.11 and in 
Tables 19.1, 19.2, 19.3 and 19.4, respectively.

19.2.2.2 Flood Stagnation Mapping (2008) 

The multiple intersection technique is adopted for the delineation of the stagnated 
flood water by employing the same software. By using the flood layers of the various 
dates the stagnation analysis has been done for one week, ten days, 15 days, 20 days, 
and one-month duration for each district. The total stagnated area of the respective 
districts has been determined for all duration like from one week to one month. The 
stagnation maps of the various durations and their corresponding affected area of 
the districts are shown in Figs. 19.12, 19.13, 19.14, 19.15, 19.16, 19.17, 19.18 and 
19.19 and in Tables 19.5, 19.6, 19.7, 19.8, 19.9, 19.10, 19.11, 19.12, 19.13 and 19.14, 
respectively.
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Fig. 19.4 Flood inundation on 10th July 2008 

Fig. 19.5 Flood inundation on 17th July 2008
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Fig. 19.6 Flood inundation on 27th July 2008 

Fig. 19.7 Flood inundation on 1st August 2008
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Fig. 19.8 Flood inundation on 23rd August 2008 

Fig. 19.9 Flood inundation on 30th August 2008
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Fig. 19.10 Flood inundation on 6th September 2008 

Fig. 19.11 Flood inundation on 25th September 2008
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Table 19.1 Total inundated portion of the flood water over the entire study area (2008) 

Total area affected by flood inundation in various dates 

Date Affected area (km2) 

10-Jul 194.75 

17-Jul 523.26 

27-Jul 1605.65 

1-Aug 833.74 

23-Aug 718.41 

30-Aug 555.75 

6-Sep 285.99 

25-Sep 554.68

19.2.2.3 Flood Inundation Mapping (2018) 

The year 2018 is also the year of severe floods. The total area affected by flood is 
2125.019 km2 as on 16 August 2018. On this day the Siddarthnagar district was 
very badly affected, followed by Balrampur and Gorakhpur districts (Table 19.15; 
Fig. 19.20).

The total area affected by flood is 2131.847 km2 as on 28th August 2018. Most 
badly affected district is Gorakhpur as on August, 28 followed by Siddarthnagar and 
Bahraich districts. The inundated areas of the various districts on 28th August are 
shown in Fig. 19.21 and Table 19.16. During 2008 on August 30, the inundated area 
by flood is 555.7 km2 which is 3.8 times less than the area affected in August 2018. 
The most badly affected district was Deoria in 2008 followed by Gorakhpur with 
inundated area of 175.53 km2 and 168.82 km2, respectively.

The total area affected by flood is 1617.27 km2 as on 1 September 2018. Gorakhpur 
is most badly affected district as on September 1 followed by Siddarthnagar and 
Deoria districts (Fig. 19.22 and Table 19.17).

Hence the severity of the flood and the stretch of the inundated areas become 4 
to 5 times more in 2018 than in 2008. Maximum increment occurred in the flood-
inundated areas in the Bahraich, Balrampur, Siddarthnagar, Gorakhpur, Deoria, Mau, 
Maharajganj districts in August and September months. Among them, the most 
severely affected district is the Gorakhpur district (Tables 19.18 and 19.19).
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Table 19.2 Total flood-inundated areas in the respective districts during the month of July 2008 

District Inundated area (km2) 

District-wise flood inundation area for 10th July 2008 

Azamgarh 6.62 

Ballia 16.78 

Basti 8.25 

Deoria 5.7 

Gorakhpur (most affected) 106.29 

Mau 12.51 

Siddarthnagar 22.86 

St. Kabir Nagar 15.74 

District-wise flood inundation area for 17th July 2008 

Azamgarh 16.91 

Ballia 122.51 

Deoria (most affected) 165.44 

Gorakhpur 106.11 

Kushinagar 31.97 

Maharajgung 30.48 

Mau 49.84 

District-wise flood inundation area for 27th July 2008 

Azamgarh 168.44 

Bahraich 28.1 

Ballia 26.49 

Balrampur 66.97 

Basti 130.81 

Deoria 78.82 

Gonda 62.59 

Gorakhpur (most affected) 392.95 

Kushinagar 0.9 

Maharajgung 56 

Mau 58.2 

Shrawasti 64 

Siddarthnagar 293.38 

St. Kabir Nagar 177
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Table 19.3 Flood inundation area of the respective districts in the month of August 2008 

District Inundated area (km2) 

District-wise flood inundation area for 1st August 2008 

Azamgarh 63 

Bahraich 0.21 

Ballia 27.49 

Balrampur 4.3 

Basti 53.67 

Deoria 68.34 

Gonda 67.7 

Gorakhpur (most affected) 354.59 

Mau 0.0061 

Shrawasti 0.0039 

Siddarthnagar 53.22 

St. Kabir Nagar 127.5 

District-wise flood inundation area for 23rd August 2008 

Azamgarh 58.44 

Bahraich 10 

Ballia 123.17 

Balrampur 9.52 

Basti 52.4 

Deoria 54.06 

Gonda 26 

Gorakhpur (most affected) 218.25 

Kushinagar 1.37 

Maharajgung 8.72 

Mau 56.54 

Shrawasti 4.79 

Siddarthnagar 22.29 

St. Kabir Nagar 72.74 

District-wise flood inundation area for 30 August 2008 

Azamgarh 35.48 

Bahraich 0.14 

Ballia (most affected) 175.53 

Basti 36.3 

Deoria 39.14 

Gonda 1.22 

Gorakhpur 168.82

(continued)
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Table 19.3 (continued)

District Inundated area (km2)

Maharajgung 6.47 

Mau 33 

Siddarthnagar 11.06 

St. Kabir Nagar 48.54 

Table 19.4 Flood inundation area of the respective districts in the month of September 2008 

District Inundated area (km2) 

District-wise flood inundation area for 6th September 2008 

Azamgarh 6.95 

Bahraich 0.03 

Ballia 89 

Balrampur 0.46 

Basti 15.16 

Deoria 22.2 

Gonda 1.6 

Gorakhpur (most affected) 96.25 

Kushinagar 1.71 

Maharajgung 3.29 

Mau 18.17 

Shrawasti 0.17 

Siddarthnagar 1.68 

St. Kabir Nagar 29.19 

District-wise flood inundation area for 25th September 2008 

Azamgarh 66.27 

Bahraich 36.19 

Ballia 61.53 

Balrampur 1.24 

Basti 70.87 

Deoria 29.63 

Gonda 90.3 

Gorakhpur (most affected) 117.09 

Kushinagar 1.25 

Maharajgung 2.26 

Mau 18.41 

Shrawasti 0.24 

Siddarthnagar 2.16 

St. Kabir Nagar 57.18
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Fig. 19.12 Flood stagnation map for one-week duration 

Fig. 19.13 Flood stagnation map for ten days’ duration
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Fig. 19.14 Flood stagnation map for ten days’ duration

19.3 Results and Discussions 

19.3.1 Flood Inundation Studies

1. From the examination of the inundations maps vis-à-vis the area of the districts, 
it is found that the day of 27th July 2008 is most heavily affected by flood and 
flood covers almost 90% of the entire area on that day. Gorakhpur, Siddarth-
nagar, and the Azamgarh districts are prioritized as 1st, 2nd, and the 3rd most 
affected districts respectively. 

2. 1st August and 23rd August also represent the days of heavy floods, which 
cover most part of the study area. 

3. From all the inundation records pertaining to the period July 2008 to September 
2008, it is inferred that Gorakhpur district is continuously and heavily affected 
by flood water. 

4. The total area affected by flood in September 2018 is almost 5.6 times more 
than the area affected in 2008. 

5. The inundation area is 1617.27 km2 as on September 1, 2018 while the area 
inundated on September 6, 2008 was 285.86 km2. 

6. At that time most badly affected district was Gorakhpur with inundated area of 
96.25 km2 followed by St. Kabirnagar with affected area of 29.19 km2.
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Fig. 19.15 Flood stagnation map for 15 days’ duration

7. The total area affected by flood is 2131.847 km2 as on 28 August 2018. Most 
badly affected district is Gorakhpur as on August, 28 followed by Siddarthnagar 
and Bahraich districts. 

8. During 2008 on August 30, the inundated area by flood covers 555.7 km2 which 
is 3.8 times less than the area affected in August 2018. 

9. The most badly affected district was Deoria in 2008 followed by Gorakhpur 
with inundated area of 175.53 km2 and 168.82 km2, respectively. 

10. The severity of the flood and the stretch of the inundated areas become 4–5 
times greater in 2018 as compared to 2008. 

11. The most affected district from 2008 to 2018 is Gorakhpur where the affected 
areas get incremented by almost 400 times. 

19.3.2 Flood Stagnation Studies

1. Comparative analysis of the stagnation scenarios in the various time durations 
shows that the duration of the 15 days in the period from July 17 to August 1, 
2008 exhibits the maximum areal extent of the stagnated water. 

2. Under the one-week duration stagnation scenarios, Gorakhpur district is found 
to be covered by the maximum extent of stagnated flood water.
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Fig. 19.16 Flood stagnation map for 20 days’ duration

3. With the increment of the time duration of stagnation from one week to month, 
there also occurs corresponding increase in the area of stagnation. 

4. Gorakhpur district exhibits the largest extent of stagnation of flood water whereas 
the other heavily affected districts comprise Ballia, Deoria, Mau, St. Kabirnagar, 
Azamgarh, Basti, Gonda, and Maharajgunj. 

19.4 Key Findings 

The year 2018 witnessed more severe floods than 2008. Gorakhpur and Siddarthnagar 
districts are most badly affected districts in the year 2018. Gorakhpur, Siddarthnagar, 
and the Azamgarh districts are prioritized as 1st, 2nd, and the 3rd most affected 
districts respectively. 

19.5 Summary 

Flood is a havoc created by nature. This disaster has been affecting life and economy 
since years. Flood inundation and stagnation studies have been done by many 
researchers by using remote sensing and GIS tools. The SAR data has been found to
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Fig. 19.17 Flood stagnation map for 20 days’ duration

be the most effective for flood studies. Flood in the West Rapti river has been reported 
in recent times. There is widespread submersion and loss of life reported almost every 
year. The exceptionally high water level of the West Rapti river is reported since the 
last few years. 

The year 2008 witnessed heavy floods in Bihar and Uttar Pradesh regions. There-
fore, the flood studies have been done for year 2008 in eastern Uttar Pradesh. The data 
required for this study is provided by R.S.A.C., Lucknow, U.P. The main purpose 
of the study is to delineate flood-affected areas in the main flood-prone districts of 
eastern Uttar Pradesh. On the other hand, the flood water stagnation studies for the 
various durations in the affected districts have been also conducted. There is total 
of 14 districts that are affected in the study area. The main flood-prone districts 
are viz. Bahraich, Shrawasti, Gonda, Siddarthnagar, Balrampur, Basti, Maharajgunj, 
Gorakhpur, Deoria, Mau, Azamgarh, Ballia, Kushinagar, and St. Kabirnagar. 

The year 2018 witnessed more severe flood than in 2008. Gorakhpur and Siddarth-
nagar districts are the most severely affected districts in the year 2018. By spatially 
intersecting the flood layers of the various dates derived from the SAR data of 2008 
of monsoon season and district boundary layer in Arc GIS ver. 9.1, flood inunda-
tion maps were generated. The flood water stagnation maps were prepared through 
spatial intersection of the flood layers of the different dates and further with the 
district boundary layer. The stagnation studies of the flood water in the affected
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Fig. 19.18 Flood stagnation map for one-month duration

districts were conducted for one week, 10 days, 15 days, 20 days, and one-month 
duration, respectively. 

On the basis of the various analyses performed, Gorakhpur district is found to 
suffer from the maximum extent of flood and is further aggravated by the most 
prolonged duration of water stagnation. The other districts affected with similar 
magnitude are viz. Siddarthnagar, Azamgarh, Ballia, Deoria, Mau, St. Kabirnagar, 
Basti, Gonda, and Maharajgunj respectively. 

The probable causes of the increment in the flood-affected areas may be the poor 
drainage system and their management in the cities, extinction of water bodies, 
encroachment of water bodies for building infrastructure, waste disposal or other 
purposes, unplanned garbage disposal, and climate change. A significant increase 
in extreme precipitation events over central India has been reported, which can be 
attributed to warming of sea surface temperature (SST) over the equatorial Indian 
Ocean (Pai and Sridhar 2015). 

The investigations demonstrated the potential of SAR images in the accurate and 
reliable delineation of the flooded area during the monsoon season due to its all-
weather capability. In addition, it is highly recommended to undertake such studies 
in the flood-affected areas on a regular basis which will be significantly helpful to 
implement appropriate relief measures thereby ensuring minimum loss of lives and 
property.
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Fig. 19.19 Flood stagnation map for one-month duration 

Table 19.5 Total affected area indicates the stagnated condition in the corresponding durations in 
the entire flood-affected area 

Total stagnated area by flood water for various durations (2008) 

Affected area (km2) 

One-week stagnation 

10–17 July 63.54 

Ten days stagnation 

7–17 July 52.73 

17–27 July 111.29 

Fifteen days stagnation 

17 July–1 Aug 641.23 

Twenty days stagnation 

7–27 July 109.52 

6–25 Sept 115.49 

One-month stagnation 

7 July–1 Aug 87.31 

27 July–23 Aug 412.89 

23 Aug–25 Sept 241.32
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Table 19.6 District-wise stagnation of flood water for one-week duration (10–17 July 2008) 

District Affected area (km2) 

Ballia 10.29 

Deoria 5.1 

Gorakhpur (most affected) 39.83 

Mau 8.31 

Table 19.7 District-wise stagnation of flood water for ten days’ duration (7–17 July 2008) 

District Affected area (km2) 

Azamgarh 2.86 

Ballia 12.31 

Deoria 1.14 

Gorakhpur (most affected) 30.51 

Mau 5.9 

Table 19.8 District-wise stagnation of flood water for ten days’ duration (17–27 July 2008) 

District Affected area (km2) 

Azamgarh 7.64 

Ballia 13.2 

Deoria 26.27 

Gorakhpur (most affected) 41.94 

Kushinagar 0.427 

Maharajgung 3.66 

Mau 18.2 

Table 19.9 District-wise stagnation of flood water for 15 days’ duration (17 July–1 August 2008) 

District Affected area (km2) 

Azamgarh 53.99 

Ballia 27.48 

Deoria 68.34 

Gorakhpur (most affected) 354.37 

Maharajgung 20.37 

Mau 54.19 

Siddarthnagar 6.16 

St. Kabir Nagar 56.3
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Table 19.10 District-wise stagnation of flood water for 20 days’ duration (7–27 July 2008) 

District Affected area (km2) 

Azamgarh 17.4 

Ballia 4.98 

Balrampur 0.18 

Basti 2.5 

Deoria 1.35 

Gorakhpur (most affected) 60.97 

Maharajgung 0.01 

Mau 4.92 

Siddarthnagar 3.43 

St. Kabir Nagar 13.73 

Table 19.11 District-wise stagnation of flood water for 20 days’ duration (6–25 September 2008) 

District Affected area (km2) 

Azamgarh 4.2 

Bahraich 0.004 

Ballia 25 

Balrampur 0.18 

Basti 1.05 

Deoria 10.8 

Gonda 0.97 

Gorakhpur (most affected) 57.62 

Kushinagar 0.64 

Maharajgung 1.18 

Mau 2.6 

Shrawasti 0.073 

Siddarthnagar 0.015 

St. Kabir Nagar 11.07

19.6 Limitations 

The stagnation studies could not be done for the year 2018 because of lack of data. 
The flood inundation mapping has also been done for August and September months 
because the data for all the rainfall days were not sufficient. The probable cause of 
increment in flood inundation and stagnation areas could not be determined because 
the current study has not included the other types of data.
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Table 19.12 District-wise stagnation of flood water for one-month duration (7 July–1 August 2008) 

District Affected area (km2) 

Azamgarh 3.93 

Ballia 2.6 

Basti 1.72 

Deoria 1.59 

Gorakhpur (most affected) 61.1 

Maharajgung 0.203 

Mau 3.66 

Siddarthnagar 1.4 

St. Kabir Nagar 11.1 

Table 19.13 District-wise stagnation of flood water for one-month duration (27 July–23 August 
2008) 

District Affected area (km2) 

Azamgarh 27.99 

Bahraich 1.72 

Ballia 12.44 

Balrampur 7.57 

Basti 36.06 

Deoria 31.33 

Gonda 13.61 

Gorakhpur (most affected) 167.49 

Kushinagar 0.013 

Maharajgung 5.36 

Mau 23.3 

Shrawasti 4.03 

Siddarthnagar 19.69 

St. Kabir Nagar 62.3
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Table 19.14 District-wise stagnation of flood water for one-month duration (23 August–25 Sept 
2008) 

District Affected area (km2) 

Azamgarh 23.62 

Bahraich 6.5 

Ballia 28.44 

Balrampur 0.57 

Basti 15.48 

Deoria 20.47 

Gonda 21.56 

Gorakhpur (most affected) 91.15 

Kushinagar 0.4 

Maharajgung 1.62 

Mau 9.68 

Shrawasti 0.15 

Siddarthnagar 0.81 

St. Kabir Nagar 20.81

Table 19.15 Flood inundation for 16th August 2018, UP 

District Affected area (km2) 

Azamgarh 69.46 

Ballia 157 

Balrampur 268 

Basti 39.15 

Deoria 67.76 

Gorakhpur 368.2 

Maharajgung 29.72 

Mau 34.24 

Siddarthnagar 498.9 

St. Kabir Nagar 84.84
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Fig. 19.20 Flood inundation map as on August 16, 2018

Fig. 19.21 Flood inundation map as on August 28, 2018
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Table 19.16 Flood inundation for 28th August 2018, UP 

District Affected area (km2) 

Bahraich 270.29 

Ballia 249.59 

Balrampur 244.74 

Basti 70.45 

Deoria 88.30 

Gonda 263.06 

Gorakhpur 347.55 

Maharajganj 16.73 

Mau 53.47 

Shravasti 128.30 

Siddharthanagar 273.26 

St. Kabirnagar 126.05

Fig. 19.22 Flood inundation map as on September 1, 2018
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Table 19.17 Flood inundation for 1st September 2018, UP 

District Affected area (km2) 

Ballia 172.26 

Balrampur 54.34 

Basti 84.34 

Deoria 249.10 

Gorakhpur 529.42 

Kushinagar 38.51 

Maharajganj 270.0 

Mau 225.26 

Siddharthanagar 410.53 

ST. Kabirnagar 91.20

Table 19.18 District-wise flood inundation areas for August Month, Year 2008, and 2018 

District-wise flood inundation area Variation in the  
affected areaAffected districts Year 2008 (30th 

August) 
Year 2018 (28th 
August) 

Azamgarh 35.48 Nil 

Bahraich 0.14 270.29 270.15 

Ballia (most affected) 175.53 249.59 74.06 

Balrampur Nil 244.74 

Basti 36.3 70.45 34.15 

Deoria 39.14 88.30 49.16 

Gonda 1.22 263.06 261.84 

Gorakhpur 168.82 347.55 178.73 

Maharajgung 6.47 16.73 10.26 

Mau 33 53.47 20.47 

Shravasti Nil 128.30 

Siddarthnagar 11.06 273.26 262.2 

St. Kabir Nagar 48.54 126.05 77.51
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Table 19.19 District-wise flood inundation areas for September Month, Year 2008, and 2018 

District-wise flood inundation area Variation in the  
affected areaAffected districts Year 2008 (6th 

September) 
Year 2018 (1st 
September) 

Azamgarh 6.95 Nil 

Bahraich 0.03 270.29 270.26 

Ballia (most affected) 89 172.26 83.26 

Balrampur 0.46 54.34 53.88 

Basti 15.16 84.34 69.18 

Deoria 22.2 249.10 226.9 

Gonda 1.6 263.06 261.46 

Gorakhpur 96.25 529.42 433.17 

Kushinagar 1.71 38.51 36.8 

Maharajgung 3.29 270.0 266.71 

Mau 18.17 225.26 207.09 

Shravasti 0.17 −0.17 

Siddarthnagar 1.68 410.53 408.85 

St. Kabir Nagar 29.19 91.20 62.01
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